
Shepherd: A Portable Testbed for the Batteryless IoT
Kai Geissdoerfer

Networked Embedded Systems Lab
TU Dresden, Germany

kai.geissdoerfer@tu-dresden.de

Mikołaj Chwalisz
Telecommunication Networks Group

TU Berlin, Germany
chwalisz@tkn.tu-berlin.de

Marco Zimmerling
Networked Embedded Systems Lab

TU Dresden, Germany
marco.zimmerling@tu-dresden.de

ABSTRACT

Collaboration of batteryless nodes is essential to their success in
replacing traditional battery-based systems. Energy-harvesting sen-
sor nodes experience spatio-temporal fluctuations of energy avail-
ability. These fluctuations become especially critical when sensor
nodes do not have sufficient energy storage to compensate for
them. Understanding the challenges and opportunities of operating
groups of batteryless sensor nodes requires to record and reproduce
spatio-temporal characteristics of real energy environments. We
thus present Shepherd, a testbed for the batteryless IoT. Shepherd
allows to record synchronized energy traces with a resolution of
3 µA and 50 µV at a rate of 100 kHz, and to faithfully replay these
traces to any number of sensor nodes to study their behavior. We
release Shepherd as an open-source tool for the community, fa-
cilitating research into time synchronization, wireless networking,
and other distributed algorithms for batteryless systems.

CCS CONCEPTS

• Computer systems organization → Embedded and cyber-

physical systems; Sensor networks; • Hardware → Analysis

and design of emerging devices and systems;

KEYWORDS

Energy harvesting, Batteryless, Intermittent power, Transient com-
puting, Intermittent networking, Testbed, Recording, Emulation
ACM Reference Format:

Kai Geissdoerfer, Mikołaj Chwalisz, and Marco Zimmerling. 2019. Shepherd:
A Portable Testbed for the Batteryless IoT. In The 17th ACM Conference on

Embedded Networked Sensor Systems (SenSys ’19), November 10–13, 2019,

New York, NY, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3356250.3360042

1 INTRODUCTION

As the Internet of Things (IoT) grows to trillions of devices [26], sus-
tainability and reliability of this computing infrastructure become
matters of utmost importance. One possible path to sustainability
is the adoption of batteryless devices that buffer harvested energy
in a capacitor, and execute when there is energy available in the
capacitor. Batteryless devices promise to overcome the drawbacks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SenSys ’19, November 10–13, 2019, New York, NY, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6950-3/19/11. . . $15.00
https://doi.org/10.1145/3356250.3360042

0

200

400

0

200

400

00
:00

00
:15

00
:30

00
:45

01
:00

01
:15

01
:30

01
:45

02
:00

0

200

400

0 500
Time [ms]

Time [MM:SS]

C
ur

re
nt

[u
A

]

Figure 1: Synchronized traces of kinetic harvesting current,

recorded with three Shepherd nodes mounted at different

locations of a car. Shepherd can replay such harvesting cur-

rent and voltage traces to distributed batteryless devices.

of (rechargeable) batteries, such as bulkiness, wear-out, toxicity, un-
certain remaining charge, etc. The limited energy capacity of capaci-
tors, however, requires intermittently executing the software, which
may harm reliability [13] despite checkpointing techniques [2, 18],
platform support [6, 11], and dedicated programming models [5].

Focusing on multiple rather than individual batteryless devices
not only enables exciting new applications (e.g., swarms of nanosatel-
lites [20]), but may also offer a new perspective on the reliability
issue. Fault tolerance in conventional (i.e., continuously-powered)
distributed systems often relies on exploiting redundancy [22]: If the
level of fault tolerance provided by a single server is unacceptable,
then multiple servers executing replicas must be used. From this
experience, we may ask research questions like the following: Is it
possible to operate a distributed collection of batteryless devices so
that the group is more reliable than each device alone? How would
efficient and reliable programmingmodels, wireless communication
protocols, and runtimes for collections of batteryless devices look
like? Can the cooperation of multiple distributed batteryless devices
bring about benefits in terms of overall efficiency and effectiveness,
similar to cooperation in multi-agent systems [21]?
Motivating example. To illustrate a possible way to investigate
those questions, Fig. 1 shows real traces of harvesting current we
synchronously recorded at three devices with piezo-electric ele-
ments. The devices are mounted at different locations of a car, and
harvest energy from the car’s vibrations as it drives through a sub-
urban area. This setting is akin to, for example, devices mounted
on a large machine in a factory (e.g., for predictive maintenance).

https://doi.org/10.1145/3356250.3360042
https://doi.org/10.1145/3356250.3360042
https://doi.org/10.1145/3356250.3360042

SenSys ’19, November 10–13, 2019, New York, NY, USA Kai Geissdoerfer, Mikołaj Chwalisz, and Marco Zimmerling

Considering any of the traces individually, we observe that the in-
stantaneous energy availability of a device varies significantly and
unpredictably over time. This is indeed one of the key challenges
in the design of useful, reliable batteryless applications [12, 17]: In
the absence of a large energy storage (e.g., a battery), fine-grained
variations in energy availability cannot be abstracted away. Rather,
the matter of when energy is available may be critical to the correct
functioning of a batteryless system, which is comparable to the cru-
cial role of time for the correctness of a cyber-physical system [7].

Looking at all three plots to the left together, we instead notice
a similar macroscopic shape of the traces. The spatial proximity of
the devices and systematic properties of the energy-harvesting en-
vironment result in a positive correlation between the time-varying
energy availabilities: If one device has energy, then the other two
tend to have energy as well. This also holds in other environments,
such as indoor solar energy harvesting (see Sec. 7). Although there
are non-negligible differences in energy availability across the de-
vices, as visible in the zoomed-in plots to the right, exploring ways
to exploit such correlations (e.g., for synchronizing and networking
batteryless devices) may eventually provide answers to the chal-
lenging research questions posed above and elsewhere [3, 12, 17].
Problem. Unfortunately, the research community lacks a tool that
enables such scientific endeavors. An appropiate tool needs to syn-
chronously record the rapidly changing energy conditions at differ-
ent points in space. Even having such traces, it is hard to accurately
model and predict the performance and behavior of a real battery-
less system because of the complex behavior of circuits exposed
to an intermittent power supply. To develop and compare novel
designs, it is thus necessary to experiment under the constraints of
time-varying energy availability by faithfully reproducing energy
environments from recorded traces or spatio-temporal models.

Recording and replaying harvested energy is hard, and few solu-
tions exist for individual devices. For example, using a source mea-
sure unit (SMU) one can profile and emulate a single harvester. How-
ever, such equipment is expensive (i.e., thousands of USD per unit),
while the sampling speed may not be sufficient to capture rapidly
changing energy availability. To address this problem, Ekho [10]
uses custom-designed, affordable hardware to record and emulate
an energy source with limited accuracy and resolution.

Testbeds support synchronous recording of current draw [15] or
energy consumption [23] at multiple distributed devices. Although
this is one piece of the puzzle, it is not possible to profile the complex
behavior of an energy-harvesting system with existing testbeds by
reproducing an energy environment. The FlockLab testbed offers
the possibility to vary the supply voltage, emulating a discharging
battery [15]. However, as described in Sec. 2, an energy harvester
has a characteristic IV curve that determines the current flowing at
a particular voltage. Emulating this behavior requires an inherently
different approach than what is found in existing testbeds.
Contribution. This paper presents Shepherd, a portable testbed
for the batteryless IoT that fills this gap. Shepherd’s main novelty
is the combined capability of accurately recording and replaying
high-resolution voltage and current traces synchronously and at
high rates across spatially distributed batteryless devices. With this,
Shepherd provides unprecedented visibility into energy environ-
ments across time and space (see Fig. 1), and faithfully reproduces

those real-world conditions for the systematic development and
evaluation of distributed batteryless applications and services.

Shepherd is a complement of hardware and software. Its modu-
lar hardware architecture rests upon a powerful observer platform
with a custom-designed analog frontend, deep local storage, and
real-time processing capabilities. Different harvesting sources, en-
ergy buffers, and sensor nodes can be attached to an observer using
well-defined interfaces. Shepherd’s software architecture tackles
the challenges of tight synchronization among observers that may
be kilometers apart (e.g., batteryless LPWAN), and by providing re-
liable, high-throughput data transfer subject to timing constraints.

Beyond record and replay, Shepherd’s harvesting traces may
be analyzed offline or fed into simulators. Conversely, Shepherd
can also replay traces generated in software or recorded with other
tools, such as Ekho [10], RocketLogger [24], or a SMU. Shepherd is
affordable (about 200 USD per observer) and portable (supporting
mobile outdoor scenarios) as it does not rely on heavy infrastruc-
ture, yet it offers all amenities of existing testbeds, including GPIO
tracing, serial logging, and remote programming.

To summarize our main contributions:
• We identify a workflow for the development and evaluation
of solutions for distributed batteryless devices, and derive the
key requirements of a testbed that supports this workflow.

• We design and build Shepherd, the first testbed that meets
those requirements. We open-source Shepherd’s hardware/
software stack together with extensive documentation and
tools that aid users during installation and experimentation.1

• We demonstrate Shepherd’s utility and capabilities using a
real-world distributed batteryless application scenario.

• We evaluate Shepherd’s performance and show, for example,
that it records traces with a resolution of 3 µA/50 µV at a rate
of 100 kHz, it replays traces with a mean error below 0.1 %,
while ensuring a synchronization accuracy of 2.4 µs or better.

2 BACKGROUND

This section provides some background on the device and energy-
harvesting architecture of batteryless systems.

2.1 Batteryless Device Architecture

In its simplest form, a batteryless device consists of a harvester and
a sensor node. The harvester is a transducer that converts some form
of ambient energy, such as solar radiation or movement, into electri-
cal energy. The sensor node operates from the energy extracted by
the harvester, and typically includes a microcontroller unit (MCU),
sensors, volatile and non-volatile memory, and a wireless radio.

In this configuration, the harvester must deliver the minimum
voltage and power required to operate the sensor node (e.g., about
1.8 V to operate the MCU and about 10mW to send a packet over
an active IEEE 802.15.4 radio). Adding an energy buffer, usually a
fixed-size capacitor, allows to decouple the node operation from
the instantaneous energy availability. While the node is inactive,
energy accumulates in the buffer. When the energy in the buffer
reaches a threshold, the node operates and consumes the buffered
energy. This way, the node can operate although the voltage or
power from the harvester is momentarily insufficient.
1https://shepherd.nes-lab.org

https://shepherd.nes-lab.org

Shepherd: A Portable Testbed for the Batteryless IoT SenSys ’19, November 10–13, 2019, New York, NY, USA

0.0 0.2 0.4 0.6
Voltage [V]

0.00

0.25

0.50

0.75

1.00

C
ur

re
nt

[m
A

]

0.0

0.2

0.4

Po
w

er
[m

W
]

MPP

Pow
er

Figure 2: Characteristic IV curve of a solar cell. The voltage

(V) on its output depends on the current (I) that is drawn and

vice versa. The maximum power point (MPP) is the operat-

ing point where the extracted power reaches its maximum.

2.2 Characteristics of Harvesting Source

An ideal voltage source provides unlimited current. Instead, a real
harvesting source has a distinctive IV characteristic: The voltage (V)
on its output depends on the current (I) that is drawn and vice versa.
The voltage together with the corresponding current determine
the harvester’s operating point. Fig. 2 shows the characteristic
IV curve (solid line) of a solar cell, illustrating that the extracted
power (dashed line) crucially depends on the operating point. The
operating point where the extracted power reaches its maximum is
calledmaximum power point (MPP). This has important implications
for the extraction of energy from the harvesting source.

2.3 Energy-harvesting Architecture

There exist two fundamental approaches to extract energy from a
harvester, converter-less and converter-based, each with their own
strengths that can be exploited for different batteryless applications.
Converter-less. As shown in Fig. 3a, a converter-less architecture
consists of the energy-harvesting source, a diode, a capacitor, and
the load. The operating point of the harvester depends on the state
of charge of the capacitor as the harvesting voltage vh is the sum
of the capacitor voltage vcap and the diode drop Vf . This prevents
effective energy extraction as the harvester’s operating point can
be far off its maximum power point. Moreover, the harvester must
be carefully selected and dimensioned to ensure minimum voltage
and power conditions. Otherwise, the sensor node may never be
able to operate, because the harvester delivers no current at a high
enough voltage. For example, a typical solar cell delivers current
only up to a voltage of about 600mV, whereas a typical MCU needs
at least 1.8 V to operate. Nevertheless, a converter-less approach
requires only a minimum number of components and is thus highly
cost-efficient, robust, and allows for extremely small form factors.
Converter-based. As shown in Fig. 3b, a converter-based architec-
ture uses a DC/DC converter in order to operate the harvester at an
operating point different from the load: The harvesting voltage vh
can be set independently of the capacitor voltage vcap . Thus, with
knowledge about the IV characteristic of the source, the system
can optimize power yield by dynamically adapting the operating

Load

(a) Converter-less.

DC/DC

converter Load

(b) Converter-based.

Figure 3: Two fundamental energy-harvesting architectures.

point of the harvester, which is known as maximum power point

tracking. This allows to efficiently harvest energy from a variety of
low-voltage sources independent of the state of charge of the ca-
pacitor. Drawbacks of this approach include increased complexity,
size, and cost because adding a DC/DC converter involves adding
an integrated circuit and a handful of passive components.

3 REQUIREMENTS AND OVERVIEW

Shepherd is the first testbed for distributed batteryless systems.
This section outlines the key requirements for such a testbed and
provides an overview of how Shepherd addresses them.

3.1 A Typical Workflow

We envision the following typical workflow for the development
and evaluation of distributed batteryless systems. A number of
testbed nodes equipped with the desired energy-harvesting tech-
nology are deployed in the energy environment of interest. The
testbed records the harvested energy at each node for a user-defined
period of time. The user retrieves the data and analyzes them to
gain an understanding of the characteristics of the recorded energy
environment. With the help of the testbed, the user can then de-
velop, test, and validate ideas involving (one or) multiple batteryless
devices by repeatedly replaying the recorded energy traces to the
device(s). This enables repeatable, experiment-driven research into
open problems such as time synchronization, wireless networking,
or distributed sensing and actuation using collections of batteryless
devices [3, 11, 17]. A solution can then be validated by deploying it
to the testbed in the target RF environment and analyzing the be-
havior and performance of the system. Replaying the same energy
conditions allows to rigorously compare different solutions.

3.2 Key Requirements

From this envisioned workflow we derive the following key require-
ments for a useful testbed for distributed batteryless systems.
High accuracy and resolution. Harvested energy must be recor-
ded and replayed accurately and precisely to be able to draw mean-
ingful conclusions. Typical voltages of harvesting transducers like
solar cells or piezo-electric elements range from hundreds of mV to
a few V. Harvesting currents have an even wider range, typically
from µA to tens of mA. Voltage and current draw of a common
sensor node are in a similar range. From these figures, we can de-
rive our first two requirements: Current should be recorded with a
resolution of 1 µA within a range up to 50mA, and voltage should
be recorded with a resolution of 1mV within a range up to 3V.
High sampling rate. Current and voltage need to be sampled at
a rate high enough to capture the fine-grained characteristics of a
harvesting source. For example, we found that a solar cell changes
its voltage within tens of µs in response to a light being switched
on. A sampling rate of at least 100 kHz is needed to capture such
rapid changes in energy-harvesting conditions.

SenSys ’19, November 10–13, 2019, New York, NY, USA Kai Geissdoerfer, Mikołaj Chwalisz, and Marco Zimmerling

Dummy
load

Sensor
node

Harvester

Emulator

Observer

SHEPHERD node

Database

Energy

Harvesting traces Harvesting traces

Dummy
load

Sensor
node

Harvester

Emulator

Observer

SHEPHERD node

Energy

Dummy
load

Sensor
node

Harvester

Emulator

Observer

SHEPHERD node

Energy

sync sync

(a) Recording.

Dummy
load

Sensor
node

Harvester

Emulator

Observer

SHEPHERD node

Database

sync

EnergyGPIO,UART

Harvesting traces

Load traces, UART, GPIO

Harvesting traces

Load traces, UART, GPIO

syncDummy
load

Sensor
node

Harvester

Emulator

Observer

SHEPHERD node

EnergyGPIO,UART

Dummy
load

Sensor
node

Harvester

Emulator

Observer

SHEPHERD node

EnergyGPIO,UART

(b) Emulation.

Figure 4: Essential components of Shepherd and their interactions during Shepherd’s two main modes of operation.

Time synchronization. To record and replay the energy environ-
ment and behavior of a batteryless network, the testbed nodes need
to be tightly time-synchronized. In particular, the synchronization
error must be significantly less than the sampling interval to unam-
biguously map samples from different nodes on a common timeline.
We therefore target a synchronization accuracy of 1 µs.
Debugging facilities. Next to remote programming, the testbed
should offer state-of-the-art debugging facilities such as synchro-
nized tracing of GPIO pins and serial logging (e.g., via printfs).
Portability, affordability, and customizability. A testbed for
distributed batteryless devices must be exposed to different energy
environments with unique characteristics and requirements. Thus,
unlike conventional testbeds that are installed at a fixed location,
a portable testbed is needed that users can afford to build and
easily set up in various locations, which poses strict limitations on
infrastructure and costs. This includes the ability to support new
harvesting modalities and node platforms with minimal effort.

3.3 Shepherd Overview

To meet the above requirements, Shepherd consists a network of
Shepherd nodes that are synchronized and operate in two modes:

• During recording (see Fig. 4a), energy flows from the har-
vester to a dummy load, which is part of a powerful observer
platform. The observer measures current and voltage, and
timestamps the data with respect to the testbed-wide time-
line. The timestamped data are first buffered locally on the
observers, and then shipped to a remote database.

• During emulation (see Fig. 4b), data are sent from the data-
base to the Shepherd nodes from where they are fed into
a harvesting emulator that outputs the corresponding volt-
age and current to an attached node. The data can be from
previous recordings with Shepherd or some other tool, or
generated using, for example, a spatio-temporal model of
an energy environment. While replaying, the observer also
monitors the sensor node’s power draw, samples the GPIO
pins, and records any serial messages from the node.

In the following two sections, we detail Shepherd’s hardware
and software architecture. Sec. 6 describes how users interact with
Shepherd. Sec. 7 illustrates the capabilities and utility of Shepherd
through a real-world use case, while Sec. 8 systematically evaluates
the performance characteristics of Shepherd’s hardware/software
stack using a series of controlled experiments.

4 SHEPHERD HARDWARE

As shown in Figs. 5 and 6, a Shepherd node consists of an observer

and three capelets, and measures 90mm×55mm×40mm. The har-
vesting capelet hosts the harvesting transducer and all components

DAC

Sensor
node

PRUs DDR RAM Cortex A-9

GPIO

UART

SD card
BeagleBone

Harvesting capelet Target capelet

Harvester

Harvesting
Recorder DC/DC

converter Load
Recorder

Dummy
load

Constant
voltage source

ADC
SHEPHERD cape

Capacitor

Harvesting
Emulator

Storage capelet

Ethernet

Emu/Rec

SHEPHERD observer

DAC

Figure 5: A Shepherd node consists of a BeagleBone SBC,

the custom Shepherd cape, and three attached capelets.

required to operate it; the storage capelet hosts the energy buffer,
usually a capacitor with the desired size; and the target capelet hosts
the sensor node. The three capelets are connected to the observer
through well-defined interfaces, which makes for a modular design
that users can easily customize depending on their needs in terms
of harvesting modality, energy storage, and sensor node platform.

The observer includes a custom-designed analog frontend, the
Shepherd cape, and a BeagleBone single-board computer (SBC). Mul-
tiple observers connect via their BeagleBones’ Ethernet ports with
each other and to a host that stores the data and runs a tool we pro-
vide for orchestrating a collection of distributed Shepherd nodes.
The Shepherd cape hosts all components and circuitry required
for the recording and replaying of energy-harvesting traces.

4.1 BeagleBone

The BeagleBone is responsible for time synchronization, hardware
interfacing, and data processing. We base our design on this plat-
form as it is a mature single-board computer with superb software
support and a living community. Two features make the BeagleBone
particularly suitable for our needs compared to similar platforms.

First, the Ethernet controller of the BeagleBone’s system-on-
chip supports timestamping of Ethernet packets. As described in
Sec. 5.2, we use this feature to tightly time-synchronize a collection
of distributed Shepherd nodes using Precision Time Protocol (PTP).

Second, the Programmable Real-time Unit Sub-System (PRUSS)
of the BeagleBone’s system-on-chip includes two deterministic
RISC cores, the Programmable Real-time Units (PRUs), which we
dedicate to time-critical tasks, such as interacting with the analog-
to-digital converter (ADC) and the digital-to-analog converter (DAC)

Shepherd: A Portable Testbed for the Batteryless IoT SenSys ’19, November 10–13, 2019, New York, NY, USA

Figure 6: A Shepherdnode is 90mm×55mm×40mm in size,

including the harvesting, storage, and target capelets.

on the analog frontend, as illustrated in Fig. 5. Less critical tasks,
such as storage and networking, are instead handled by the high-
throughput ARM Cortex-A9. The PRUs and the ARM core can
exchange data and control signals through shared memory and the
system bus, which we use to implement a bidirectional communica-
tion protocol (see Sec. 5.1). The PRUs also have direct, low-latency
access to some peripherals including the GPIOs. This is essential to
achieve a GPIO sampling latency in the low µs range.

Using expansion headers, the analog fronted is stacked onto the
BeagleBone as a cape (hence the name Shepherd cape), which in
turn serves as the base board for the capelets discussed next.

4.2 Capelets

Shepherd supports different harvesting sources, energy buffers,
and node platforms. To this end, we physically separate the Shep-
herd cape (i.e., the analog frontend) from these components by
introducing harvesting, storage, and target capelets, making it easy
to exchange them (modularity) without affecting the behavior of
the Shepherd cape or the BeagleBone (composability).
Target capelets. Target capelets are similar to adapter boards in
Flocklab [15]: They provide a hardware interface that allows con-
necting a specific sensor node to Shepherd. It essentially connects
the node to the capacitor-buffered output voltage of Shepherd’s
DC/DC converter. The well-defined connector includes all signals
required to control and monitor a wide spectrum of sensor nodes
through Shepherd. For example, Serial Wire Debug (SWD) signals
allow remote programming and debugging of many modern ARM-
based nodes. Universal Asynchronous Receiver/Transmitter (UART)
pass-through allows programming of targets with a serial boot-
loader (e.g., TelosB) in addition to serial logging and injection of
commands. Finally, four General Purpose Input Output (GPIO) lines
facilitate high-resolution monitoring of logical program states.

We provide a nRF52840 capelet as reference implementation of a
target capelet. It interfaces the increasingly popular off-the-shelf
nRF52840 dongle from Nordic Semiconductor with Shepherd. This
target capelet merely serves as an adapter to connect the pins of
the dongle to the 16-pin target connector on the Shepherd cape.

RS

ADCA1

A2

im

(a) Current/voltage recorder.

VDD

R1

R2

RR

iemu

DAC

(b) Current emulator.

Figure 7: High-level schematics of recorder and emulator.

Harvesting capelets.Harvesting capelets provide Shepherd nodes
with the energy-harvesting source of choice, such as a solar panel or
piezo-electric element. Harvesting capelets may have a small flash
memory that can be used to store an ID and specific parameters for
the mounted type of harvester. We provide two harvesting capelets.

The solar capelet allows to mount a solar panel to a screw ter-
minal, directly connecting this DC source to Shepherd. Using a
voltage divider, the operating point of the maximum power point
tracker of the DC/DC converter (see Sec. 4.3) is set to 80 % of the
open-circuit voltage, which is typical for solar energy harvesting.

The kinetic energy harvesting (KEH) capelet is a more complex
example of a harvesting capelet. The AC voltage from the piezo-
electric element connected to the screw terminal is rectified with a
full-bridge rectifier before connecting it to Shepherd’s DC/DC con-
verter. In contrast to solar energy harvesting, the optimal operating
voltage of a piezo-electric harvester is often not derived from the
open-circuit voltage, but set to a fixed value. For this reason, the
KEH capelet has a flash memory that is used to inform Shepherd
about the type of capelet and the desired operating voltage.
Storage capelets. Storage capelets host a capacitor as energy buffer
that is directly connected to the DC/DC converter of the Shepherd
cape. We provide a storage capelet with a 150 µF ceramic capacitor.

4.3 Analog Frontend: The Shepherd Cape

During recording the observer measures the power extracted from
the harvester, and during emulation it replays (this or some other)
power trace to the sensor node while measuring the node’s con-
sumption. The custom-designed analog frontend hosts the circuitry
and components required to support these two modes of operation,
node programming and debugging, as well as ensuring a defined
initial filling level of the energy buffer before an experiment starts.
Our design also caters for use cases where Shepherd serves as a
portable testbed for non-harvesting sensor nodes.
DC/DC converter. Existing work on recording and emulating har-
vesting traces considers converter-less systems [10]. Because the
harvested energy depends on the load voltage in this case, as ex-
plained in Sec. 2.3, the whole IV characteristic has to be sampled
for every point in time by rapidly altering the load voltage.

With Shepherd’s converter-based approach, the harvester can
be operated at a defined point, independent of load behavior and
capacitor voltage. Therefore, it is sufficient to sample current and
voltage at the defined operating point for any single point in time,
allowing orders of magnitude faster sampling. During replay the
DC/DC converter is then forced into the very same operating point.

SenSys ’19, November 10–13, 2019, New York, NY, USA Kai Geissdoerfer, Mikołaj Chwalisz, and Marco Zimmerling

We use TI’s BQ25504, an industry-standard boost converter that
charges a storage element from a harvesting source with a voltage
of 100mV or higher. It provides over- and under-voltage protec-
tion, and a storage-voltage-in-operating-range signal that indicates
whether the attached storage element is in a configurable operating
range. This signal changes to high when the voltage on the storage
element rises above the upper threshold and changes to low when
the voltage falls below the lower threshold. An attached load, such
as a sensor node, can use this signal to schedule its activity based
on the amount of energy in the buffer. We also use it to control our
dummy load, as explained in the following paragraph.
Dummy load. The DC/DC converter operates the harvester inde-
pendent of the state of charge of the capacitor, but this only holds
within certain limits. For example, the BQ25504 can only charge a
storage element up to 5.5 V. Above this threshold it switches off the
regulator so nomore current is flowing from the harvester. Similarly,
once the voltage on the capacitor falls below 1.8 V, the BQ25504
operates in cold-start mode, where a charge pump operates the
harvester at a fixed operating voltage with reduced efficiency. Thus,
it is important to keep the voltage on the storage element within
these limits to guarantee independence of the harvester’s operating
point and the capacitor voltage during recording. To this end, we
use a dummy load that consumes the harvested energy from the
capacitor when the voltage reaches a defined threshold (currently
2.8 V). We make use of the storage-voltage-in-operating-range sig-
nal of the BQ25504 to switch on an electric load consisting of two
parallel light-emitting diodes (LEDs). This load remains on until
the capacitor voltage falls below a lower threshold (currently 2.3 V).
Harvesting recorder. The harvesting recorder measures voltage
and current flowing from the harvester to the DC/DC converter.

Accurately measuring current at high rates over a wide dynamic
range is challenging. The challenge lies in converting the range of
current to a range of voltage that matches the input range of the
ADC without negatively affecting the signal source and without
introducing excessive noise into the signal chain.

We use a shunt am-meter (RS and A1 in Fig. 7a) that measures
the voltage drop as current flows through a resistor. Using a large
resistor results in a large voltage drop, effectively reducing the volt-
age seen by the load (burden voltage). Conversely, a small resistor
produces a small voltage drop, requiring significant amplification
before the ADC. Since the collective noise at the input stage of the
amplifier is also amplified this results in a lower signal-to-noise
ratio (SNR). The noise is usually broadband and can be reduced by
downsampling; however, this reduces the effective sampling rate.

We use a small shunt resistor of RS = 1Ω to keep the burden
voltage low. The voltage drop is amplified with an ultra-low noise
instrumentation amplifier (A1), keeping noise levels to a minimum.
The amplified voltage is sampled using a high-resolution successive
approximation register ADC that has a second-order low-pass filter
on the input to band-limit the noise entering the ADC.

Measuring voltage is relatively easy as typical harvesting volt-
ages are well within the range of commonly used ADCs. However,
the input impedance of the ADC is relatively low, allowing current
to flow from the harvesting source into the inputs of the ADC af-
fecting the measurement. Therefore, we use a low-noise op-amp
with very low input bias current as voltage buffer (A2 in Fig. 7a).

Harvesting emulator. For replaying traces previously recorded
or generated in software, we must independently set voltage and
current at the input of the DC/DC converter. The BQ25504 can be
supplied with a reference voltage to which it regulates the input.
We use a high-speed, high-resolution DAC to dynamically generate
this reference voltage according to the sequence of digital values in
the recorded/generated trace. We set the current using the precision
high-side voltage-to-current converter shown in Fig. 7b. This circuit
provides a current to a ground-referenced load (RR) proportional
to the voltage on the input. This voltage is generated with a second
DAC that is identical to the one used for the reference voltage. The
resulting current flows through resistor R1, causing a voltage drop.
The amplifier A2 regulates the current through R2 such that the
corresponding voltage drop equals the voltage over R1, effectively
setting iemu proportional to the input voltage from the DAC.
Load recorder. To study the collective behavior of a group of har-
vesting nodes running a distributed application, it is essential to
monitor their power draw. To this end, we provide a load recorder
that measures the voltage on the capacitor and the instantaneous
current drawn by the sensor node. The load recorder has similar
requirements as the harvesting recorder and is thus almost iden-
tical to the one shown in Fig. 7a. The only difference is a slightly
cheaper instrumentation amplifier with a wider common-mode
range supporting current measurements at load voltages above 4V.
Constant voltage source. We also add a constant voltage source
that can be dynamically enabled and disabled in software at runtime.
The voltage can be set to values in the range from 2.2 V to 3.3 V
using a potentiometer. The constant voltage source serves three
main purposes: (i) it supplies the sensor node with a stable voltage
during programming/debugging; (ii) it allows to pre-charge the
energy buffer to a defined initial filling level; (iii) it allows to use
Shepherd as a portable testbed for non-harvesting sensor nodes.
EEPROM. The Shepherd cape also features a 256 kB Electrically
Erasable Programmable Read-only Memory (EEPROM) to store the
name of the cape, a unique ID, and hardware calibration parame-
ters. Based on the name of the cape, the software running on the
BeagleBone can automatically configure peripherals; for example,
it configures the corresponding GPIO pins as input. Storing calibra-
tion data on the cape hardware also relieves the user from the task
of keeping track of which cape is mounted on which BeagleBone.

5 SHEPHERD SOFTWARE

The Shepherd software stack consists of four main components:
The PRU firmware controls the hardware on the Shepherd cape.
The kernel module provides an interface between the PRU firmware
and the user-space code, and synchronizes the PRU clock to the
Linux host clock. The user-space code handles data storage and
retrieval, and exposes a high-level user interface to manage all un-
derlying software and hardware. Finally, the user interface provides
a convenient way to start/stop recording and emulation from the
user’s machine on a collection of distributed Shepherd nodes.

5.1 Data Handling

The key challenges in Shepherd’s software architecture include
time synchronization and high-throughput data exchange among

Shepherd: A Portable Testbed for the Batteryless IoT SenSys ’19, November 10–13, 2019, New York, NY, USA

user-space code, Linux kernel code, and the PRUs subject to timing
constraints. Our solution uses four mechanisms: (i) interrupts be-
tween the ARM Cortex-A9 and the two PRUSS cores; (ii) the Linux
remoteproc framework that manages resources and controls the
state of the PRUs; (iii) the Remote Processor Messaging (RPMSG)
protocol, a standardized messaging solution for communication
with the PRUs; and (iv) shared access to the main DDR RAM.

In the following, we describe the data exchange during emulation
as the more general case that involves bi-directional data exchange:
harvesting data is transferred from the database to the frontend,
and load recordings are sent from the frontend to the database. We
use the remoteproc framework to allocate an area in the DDR RAM
that can be accessed from Linux and from the PRUs. We divide
this memory into 64 buffers that can each store 10,000 current
and voltage samples. The user-space code starts by copying data
from the database into memory, buffer by buffer. After writing a
complete buffer, the corresponding index is sent to the PRU core
that is responsible for data acquisition (PRU1) as an RPMSG. The
RPMSG communication is double-buffered such that both sides
can keep writing into the corresponding queues, while the other
side is busy. PRU1 retrieves the buffer index from the queue and
transfers the samples one by one to the DAC based on a sampling
trigger generated by PRU0. After sending one sample to the DAC,
it samples the ADC and overwrites the memory from which the
DAC sample was read. After processing a complete buffer, PRU1
returns the buffer index to the RPMSG queue. The user-space code
receives the buffer index from the queue, copies the data to the
database, and fills the buffer with the next block of emulation data.
Database.We currently use the hdf5 file format to store data locally
on each Shepherd observer, using an SD card or USB flash storage.
Together with the raw data, we store calibration values retrieved
from the EEPROM on the Shepherd cape. This approach allows to
easily share data that can be viewed and replayed independent from
the hardware it was recorded with. After recording, data can be
conveniently downloaded from individual nodes and merged into a
single file using the command-line utilities we provide (see Sec. 6).
Similarly, for emulation, the corresponding data are uploaded to
each Shepherd node before the experiment starts.

5.2 Time Synchronization

Meaningful experimentationwith a collection of batteryless, energy-
harvesting devices requires that both the recording and the emu-
lation of harvested energy happens synchronously on all devices
under test. Similarly, recordings of load voltage and current have
to be time-synchronized in order to interpret node interactions.

We use an approach where each sample is scheduled at a defined
point in time. At a sampling rate of 100 kHz, samples are always
taken at the wrap of full 10 µs. This has two advantages: (i) While
synchronized, all nodes take the same number of samples on aver-
age. (ii) It is sufficient to timestamp the first sample in any ’block’ of
samples: The timestamp of all following samples in that block can
be derived from this first timestamp using the sampling interval.

The goal of time synchronization is to take and replay samples at
the same specified time on a number of Shepherd observers with
as little jitter as possible. In essence, this means that the PRUSS
cores on the observers, which handle the direct interaction with
the hardware on the analog frontend, need to act in concert. We

describe the synchronization on two levels: (i) How to synchronize
the Linux host clocks of a number of Shepherd observers using
(a) Global Positioning System (GPS) and (b) PTP, and (ii) how to
locally synchronize the PRUSS cores to the Linux host clock.
GPS. Using GPS allows to globally absolutely synchronize clocks
with high accuracy: GPS fundamentally relies on accurate time-of-
flight measurements between the receiver and multiple satellites.
For this purpose, the receiver has to be tightly synchronized to the
satellites. Many receivers output a pulse per second (PPS) signal, a
sharp rising or falling edge of an electrical signal with the wrap of
every second. Together with information about the global time of
that second, it is relatively easy to synchronize another node to the
globally accurate GPS time. Using gpsd and chrony, the host clock
of the Linux OS running on the BeagleBone can be synchronized.

The advantage of using GPS is that the Shepherd nodes do not
need to be physically connected. For example, Shepherd can be
used to explore solar energy harvesting LPWAN networks where
nodes can be kilometers apart making physical connections infea-
sible. However, GPS receivers can be expensive and always require
line of sight to the satellites, severely limiting deployment options.
PTP. As an alternative, we consider PTP, which is a time synchro-
nization protocol based on transmission time measurements over
standard Ethernet links. A number of slave nodes synchronizes to
a common master, which can be elected automatically based on
clock quality estimation. TI’s AM3358 SoC, the core of the Beagle-
Bone, implements hardware time-stamping of Ethernet packets,
significantly improving the achievable accuracy of PTP. PTP is
readily available in Linux and, combined with phc2sys allows to
synchronize the Linux host clocks of multiple Shepherd observers.
When combining GPS and PTP, every partition that does not have
an Ethernet connection to all other nodes must contain one GPS
master to achieve global time synchronization across all nodes.
PRUs. The last stage of the synchronization hierarchy is the syn-
chronization between the Linux host clock and the PRUs. To the
best of our knowledge, there exists no standard approach so we
developed a custom synchronization procedure.

At a fixed time in every interval (currently after 5ms in a 100ms
interval), the Linux kernel module timestamps the Linux host clock
and immediately sends an interrupt to one of the PRU cores (PRU0).
On reception, PRU0 immediately timestamps its own clock and re-
quests the corresponding timestamp from the kernel module. With
these two values, the PRU estimates its offset from the host clock. By
storing the last pair of timestamps, it also estimates the clock drift
with respect to the host clock. This way, the PRUs can accurately
schedule all samples until the next synchronization interval.

6 USING SHEPHERD

Public testbeds expose an application programming interface (API)
or graphical user interface (GUI) to the user, while the underlying
implementation is only relevant to the testbed maintainers. By con-
trast, users of Shepherd are exposed to the full hardware/software
stack. We anticipate two different types of users: The first group
has no specific hardware requirements and wants to get started
quickly by using the reference hardware and software we provide.
Ideally, a user from this group boots up the BeagleBones and runs
the provided software to record and emulate harvesting traces. The

SenSys ’19, November 10–13, 2019, New York, NY, USA Kai Geissdoerfer, Mikołaj Chwalisz, and Marco Zimmerling

second group of users requires dedicated hardware and/or software
solutions to achieve their goal. For this group of users, modularity
and composability are key: They must be able to quickly change
parts at every level of the hardware/software stack.

We aim for a flexible, yet robust solution that satisfies the needs
of both types of users. We implement Shepherd using standard
Linux interfaces and the most high-level programming language
possible for a given task. That is, only the SPI transfer routines are
written in assembly; we use C for the Linux kernel module and the
firmware of the PRUs; software running in user-space is written in
Python. Users interact with Shepherd in four ways.

1) Installation: After mounting the Shepherd cape onto the Bea-
gleBones, users download and flash the latest Ubuntu image to the
SD cards by following the instructions on the BeagleBone website.
Then they log into each node using the default credentials to set a
unique hostname and configure public/private key based ssh ac-
cess. Finally, they deploy the Shepherd software stack by installing
two Debian packages, which we provide as release artifacts on the
Shepherd repository. These steps can be executed manually for
each node or by running the provided Ansible playbook against all
nodes with one command from the user’s machine.

2) Calibration: Although Shepherd can work with default values
derived from the hardware specs, the recording and emulation
accuracy is greatly improved when applying per-node calibration,
as evaluated in Sec. 8. We provide one walk-through example on
how to fully automate the calibration process using a Keithley SMU,
which can be controlled remotely over Ethernet or USB. We also
provide a second example for users with access to a stock lab-bench
power supply and multimeter. The example guides the user through
the calibration process in a step-by-step manner, prompting the
required reference values on the command line. Using these scripts,
the calibration procedure takes roughly 10 minutes per node.

3) Usage: To record and replay harvesting traces, users invoke
two command-line utilities. shepherd-sheep is run locally on each
Shepherd observer node and provides a rich interface to start
recording or emulation, run a GUI webserver, or to start a remote
procedure call (RPC) interface. A user may use this interface to
investigate the behavior of a single battery-less node. Nevertheless,
the key functionality of Shepherd is the ability to orchestrate a
number of time-synchronized Shepherd nodes. To this end, users
can run the shepherd-herd tool on any host with ssh access to the
network of Shepherd observers, which provides similar function-
ality as shepherd-sheep but takes as an argument a list of Shepherd
nodes on which the corresponding commands should be executed.

4) Development: We make Shepherd’s hardware and software
available as open source, and encourage users to provide feedback
and develop new features. We help users getting started with three
measures: (i) modularity and extensive documentation, (ii) a test
suit for catching software bugs early and showcasing functionality,
(iii) automation of build and deployment tasks using standard tools.

7 SHEPHERD IN ACTION

This section demonstrates the utility of Shepherd when testing a
distributed algorithm for batteryless nodes in a real environment.
Scenario. We consider an indoor solar energy harvesting scenario.
The testbed comprises three Shepherd nodes. Each node consists of

a BeagleBone Green, the Shepherd cape, a 7 cm × 2 cm solar panel
mounted onto a solar capelet, a nRF52840 capelet, and a storage
capelet that hosts a 150 µF ceramic capacitor. The three Shepherd
nodes are placed on tables inside a room without windows, receiv-
ing only little light through a glass door. Node 2 is slightly tilted,
facing that glass door, while nodes 1 and 3 are oriented horizontally.

We develop an example application for the nRF52840 that wakes
up from system-off mode when it sees a rising edge on the voltage-
in-operating-range pin of the BQ25504, which is triggered when the
capacitor voltage exceeds 2.8 V. After initialization, the application
senses the supply (i.e., the capacitor) voltage every 125ms. When
the supply voltage reaches 3 V, it executes a task that involves sam-
pling the temperature sensor and transmitting the reading to a re-
mote base station by embedding it into Bluetooth Low Energy (BLE)
advertisement packets sent on the three corresponding channels.
The application continues to sample its supply voltage until the
3 V threshold is again exceeded or the voltage-in-operating-range
pin of the BQ25504 is pulled low as the supply voltage falls below
2.3 V. The latter causes an interrupt that puts the nRF52840 into
system-off mode from which it only wakes up on a rising edge of
the voltage-in-operating-range pin. The application indicates state
changes (system-off, sleeping, sampling supply voltage/ADC, trans-
mitting BLE advertisement packets) using GPIO pins. In this way,
we can track the logical state of each node with high resolution.
Recording.We record harvesting current and voltage for 60 sec-
onds synchronously on the three Shepherd nodes. Initially, the
room lights are switched off. After 30 seconds, we turn the room
lights on and keep recording for another 30 seconds.

Fig. 8 plots the voltage and current recorded on the three nodes.
Initially, the voltages are low. The spikes at around 12, 30, 45, and 60
seconds are due to MPP tracking. To this end, the BQ25504 shortly
disconnects the harvester and samples the solar panel’s open-circuit
voltage. For the next 16 seconds, it regulates the voltage to 80 % of
that voltage. As soon as the light is switched on, the current sharply
rises on all three nodes, as shown in the zoomed-in plots to the
right. However, the voltage remains low as the converter keeps it at
the regulation point. Only after the next MPP tracking at around 40
to 45 seconds, the voltage is also increased to track the new MPP.
Emulation.We replay the recorded traces to the nRF52840 devices
running our example application, while recording capacitor voltage,
current, and GPIO traces. Fig. 9 shows that all three nodes start
in system-off mode. The small amount of energy extracted from
the solar panels is sufficient to slowly charge the capacitors while
the nodes are still powered off. Following the recorded harvesting
traces, node 2 receives most energy and is thus the first to reach
the power-on threshold of 2.8 V. The wake-up causes a significant
current spike and corresponding voltage drop, while the MCU ini-
tializes memory and peripherals. However, as long as the room
lights are switched off, the periodic sampling of the supply voltage
using the ADC is not sustainable, leading to a decreasing capacitor
voltage and eventually power-off. After switching on the room
lights, the nodes power up quickly and accumulate enough energy
to read out the temperature sensors and send the readings to the
base station. We in the zoomed-in plots to the right that the nodes
execute the task at different times and that the execution drains the
capacitor voltage much faster than it rises during charging.

Shepherd: A Portable Testbed for the Batteryless IoT SenSys ’19, November 10–13, 2019, New York, NY, USA

Figure 8: Voltage and current traces recorded by three Shepherd nodes in an indoor solar energy-harvesting scenario. The

plots on the right zoom into the moment the room lights are switched on (marked in red on the left).

Figure 9: Capacitor voltage, current, and logical states when replaying the traces from Fig. 8 to three sensor nodes. The black

dashed line indicates when the lights are switched on. The plots on the right zoom into the time marked with a red solid line.

Reproducibility. One of Shepherd’s strengths is its ability to
emulate spatio-temporal energy availability. Given a deterministic
application, this should also lead to a consistent behavior across suc-
cessive emulation runs with the same harvesting traces. To quantify
this reproducibility, we consider three parameters of our example
application that may be of interest to a developer: (i) #packets is
the total number of packets sent by a node during a 60-second
experiment with the recorded traces from Fig. 8; (ii) wake-up time is
the time from the start of an experiment until the node executes the
sense-and-send task for the first time; (iii) sleep time is the total time
spent in sleep mode (i.e., powered on and waiting for an interrupt).

We replay the traces ten times and measure the three application-
level parameters for all three nodes. Table 1 lists for each parameter
and node the mean and the error, defined as the maximum absolute
difference between any two repetitions. The errors are very small
across all nodes and parameters. This demonstrates the ability of
Shepherd to accurately reproduce application behavior, which
can greatly aid in the development and evaluation of batteryless

Table 1: Application parameters when replaying the same

energy-harvesting traces to three nodes ten times. The error
is the max. absolute difference between any two repetitions.

#packets Wake-up time Sleep time
Mean Error Mean Error Mean Error

Node 1 238.5 4 33.4 s 0.1 s 23.6 s 0.7 s
Node 2 177.1 6 32.8 s 0.3 s 36.3 s 0.8 s
Node 3 226.6 9 35.1 s 0.5 s 26.4 s 0.9 s

applications and system services. Overall, the observations and
insights presented throughout this section would be very difficult,
if at all possible, to attain without a tool like Shepherd.

8 PERFORMANCE EVALUATION

The previous section showed some of Shepherd’s capabilities, sug-
gesting that Shepherd meets the performance requirements from
Sec. 3. This section shows that this is indeed the case for the current
hardware/software stack by answering the following questions:

SenSys ’19, November 10–13, 2019, New York, NY, USA Kai Geissdoerfer, Mikołaj Chwalisz, and Marco Zimmerling

Table 2: Summary of Shepherd performance specification.

Sampling rate 100 kHz

Range

Harvesting voltage 100mV-3V
Harvesting current 0mA-50mA
Load voltage 0 V-4V
Load current 0mA-50mA
Emulation voltage 100mV-3V
Emulation current 0mA-50mA

24 h DC Accuracy

Harvesting voltage 19.53 µV ± 0.01 %
Harvesting current 381 nA ± 0.07 %
Load voltage 19.53 µV ± 0.01 %
Load current 381 nA ± 0.01 %
Emulation voltage 11 µV ± 0.012 %
Emulation current 191 nA ± 0.025 %

RMS Noise (@1 kHz)

Harvesting voltage 50 µV (14 µV)
Harvesting current 3 µA (0.4 µA)
Load voltage 48 µV (10 µV)
Load current 4.5 µA (0.9 µA)

Bandwidth Recording channels 15 kHz

Risetime Emulation voltage 65ms
Emulation current 19.2 µs

Max. burden voltage Harvesting recorder 50.4mV
Load recorder 76.1mV

Min. GPIO sampling rate 580 kHz

Avg. current draw 345mA

Max. synchronization error 2.4 µs

• What is the time difference between two nodes when taking
or replaying a sample at the supposedly same time?

• What are the electrical characteristics affecting the resolu-
tion, accuracy, and sampling rate of voltage and current?

• What is the resolution, frequency, and synchronization with
which Shepherd can trace GPIO pin changes?

• Does the average power draw of a Shepherd node allow for
extended experiments without mains power supply?

For reference, Table 2 summarizes the main performance char-
acteristics of our current Shepherd implementation.

8.1 Time Synchronization Accuracy

Ideally, we would measure synchronization accuracy by compar-
ing the times when the ADCs on two Shepherd nodes close their
sample and hold switch. However, this switch is not accessible
from outside. According to the datasheet, the ADC starts the con-
version on the falling edge of the SPI chip select (CS) signal. We
thus measure the delay between 10,000 consecutive falling edges of
the SPI CS signal on two nodes to determine the synchronization
accuracy. There may be jitter introduced by the circuitry inside the
ADC/DAC, but we expect it to be small. We consider two setups:

• Setup A (Fig. 10): In this setup, we use two nodes that are
connected over an off-the-shelf Ethernet switch and synchro-
nized to a common PTP master within the same network.

PTP Master

PTP Slave PTP Slave
Ethernet

SPI CS SPI CS

−2 −1 0 1 2

Figure 10: In setup A, two Shepherd nodes are synchro-

nized to one PTP master over a COTS Ethernet switch.

PTP Master

PTP Slave

−2 −1 0 1 2
∆T[µs]

PTP Master

PTP Slave

GPS GPS

SPI CS SPI CS

Figure 11: In setup B, two Shepherd nodes are part of two

separate Ethernet networks with their own PTPmaster that

is synchronized to global GPS time.

• SetupB (Fig. 11):We use four nodes in two separate Ethernet
networks. Each network consists of a Shepherd node acting
as PTP slave that is connected over Ethernet to a PTP master
with a GPS reference clock. The two networks are physically
separated, representing scenarios where nodes are mobile
or too far from each other for a direct, wired connection.

We plot the median and 25th/75th percentiles of the synchroniza-
tion error at the bottom of Figs. 10 and 11; the dots to either side of
the whiskers are outliers. Even with the outliers, we find that the
maximum synchronization error across both setups is as small as
2.4 µs: 91 % of the measurements are within our targeted synchro-
nization accuracy of 1 µs, also for setup B in which the Shepherd
nodes have no wired connection between each other (see Fig. 11).

8.2 Electrical Characteristics

Zero-input root mean square (RMS) noise. The noise floor cru-
cially determines the effective resolution, that is, the smallest signal
change that can be differentiated. There are various sources of
noise in the signal acquisition chain, including switching noise
from the DC/DC converter and thermal noise from the shunt re-
sistors. Assuming that the noise has zero mean, is uncorrelated,

Shepherd: A Portable Testbed for the Batteryless IoT SenSys ’19, November 10–13, 2019, New York, NY, USA

10

20

30

40

50

R
M

S
no

is
e

[µ
V

]

Voltage

Load
Harvesting

102 103 104 105

Datarate fD [Hz]

0

1

2

3

4

R
M

S
no

is
e

[µ
A

]

Current

Load
Harvesting

Figure 12: RMS noise against data rate for all four channels.

and uncorrelated to the measured signal, the noise power can be
reduced, for example, by a factor of two by averaging over four
consecutive samples at the cost of a decreased data rate.

We use a Keithley SMU2604B SMU to apply a zero-input signal to
each of the four channels of a Shepherd node (i.e., harvesting volt-
age/current, and load voltage/current) and sample for 10 seconds at
Shepherd’s fixed sampling rate of fS = 100 kHz. Fig. 12 plots the
RMS of all four channels against the data rate fD after averaging
over fS /fD samples. We see that Shepherd’s voltage resolution is
much better than the required 1mV, and that the current resolution
is within the required 1 µA for data rates below 8 kHz.

Table 3: Maximum burden voltage and impedance.

Channel Maximum burden voltage [mV] Impedance [Ω]

Harvesting 50.4 1.008
Load 76.1 1.342

Burden voltage. Measuring current with a shunt resistor intro-
duces a voltage drop between the source and the load. Similarly,
the switches used to select between recording and emulation for
the harvesting channel as well as between dummy load and sensor
node for the load channel also cause a voltage drop that would not
be present in an ideal system. To measure the burden voltage, we
use the Keithley SMU from before to perform a current sweep with
a resolution of 1mA. For every value, we measure the resulting
voltage drop over the measurement circuitry and the control logic.

The results reveal a linear dependency between the burden volt-
age and the current, and that the burden voltage is dominated by
the respective shunt resistor. Table 3 lists the maximum burden
voltage and the corresponding impedance. Because current and
voltage on a harvester typically correlate, the impact of losses due
to burden voltage are small; for example, the loss is less than 2%
for the maximum current and voltage supported by Shepherd.
Recording bandwidth.We use a 51Ω resistor as load and an AIM-
TTI TG5011 function generator to measure the bandwidth of all four
recording channels by configuring it for an amplitude of 2 V and a
linear frequency sweep of up to 50 kHz. We define the bandwidth as
the frequency at which the measured amplitude falls below −3 dB

Table 4: DC accuracy in terms of mean absolute percentage

error (MAPE) without calibration and 24 hours after calibra-

tion. LSB represents the measurement resolution.

MAPE
Channel LSB after 24 h [%] uncalibr. [%]

harv. rec. voltage 19.53µV 0.011 0.150
current 381nA 0.072 0.918

load rec. voltage 19.53µV 0.028 0.051
current 381nA 0.018 0.714

harv. emu. voltage 11µV 0.012 5.962
current 191nA 0.025 20.450

with respect to the 2 V input. We find that the bandwidth of all four
channels ranges between 15.1 kHz and 15.2 kHz, which corresponds
to the nominal bandwidth of the low-pass filter built into the ADC.
Emulation rise time. A critical parameter for the harvesting em-
ulator is the time it takes to change its operating point. We mea-
sure the rise time for the current source by inserting a resistor
between its output and ground, and then applying a low-frequency
square wave with an amplitude from 0A to 50mA through the
DAC. For the voltage emulation path, we use a 220 µF capacitor and
the dummy load, and apply a constant current of 500 µA using a
Keithley 2604B. We measure the regulated voltage at the input of
the DC/DC converter while applying a low-frequency square wave
with an amplitude from 100mV to 3V through the DAC.

We measure the time it takes for the signal to rise from 10%
to 90 % of its range with an Agilent MSO7104B oscilloscope. The
19.2 µs rise time of the current source is within expectations and
short enough to accurately emulate rapidly changing conditions.
For the voltage channel, we observe a long rise time of 64ms. A
closer examination reveals that the set-point voltage provided by
the DAC rises to its value within a few µs, but the BQ25504 only
applies the reference voltage with its internal duty-cycle of 64ms.
However, this is not critical as the voltage is regulated: it typically
does not change in response to changing conditions.
DC accuracy. DC accuracy quantifies how close a value measured
or emulated with Shepherd is to the true value. To measure it, we
use the Keithley SMU to do a sweep over the full range of the four
recording channels, and log the value measured with Shepherd
together with the corresponding reference value. For the two emu-
lation channels (harvesting load/current), we reverse the setup and
apply the sweep using Shepherd. For the current source, we use a
91Ω resistor as the load and the SMU as amperemeter. For the volt-
age emulation path, we use a 220 µF capacitor and the dummy load,
and apply a constant current of 500 µA to the SMU. We measure
the regulated voltage at the input of the DC/DC converter.

We do these measurements without calibration and then again 24
hours after calibration. The mean absolute percentage error (MAPE)
and the least significant bit (LSB) indicating the measurement res-
olution are shown in Table 4. We see that the calibration process
described in Sec. 6 improves the DC accuracy considerably, in par-
ticular for the two emulation channels. The MAPE values 24 hours
after calibration are below 0.1 % across the board, demonstrating
that Shepherd can accurately record and replay harvesting traces.

SenSys ’19, November 10–13, 2019, New York, NY, USA Kai Geissdoerfer, Mikołaj Chwalisz, and Marco Zimmerling

Table 5: Comparison of Shepherd with Ekho [10].

Ekho [10] Shepherd

Sampling rate 0.135 kHz/1 kHz 100 kHz
Nominal current resolution 10 µA 0.381 µA
Current emulation error (86.9 ± 46.2) µA (0.51 ± 0.29) µA

8.3 GPIO Tracing Performance

Shepherd can sample and store the state of up to four GPIO pins
during recording and emulation. The state is continuously polled
by the PRU firmware. We measure the maximum polling interval
by toggling a pin within the corresponding routine and measuring
the maximum delay between two edges with a Salea Logic 8 logic
analyzer. The maximum delay is 1.7 µs. This is the minimum time a
pin must be high or low for the change to be recorded. It is also the
maximum delay between the event and the recorded timestamp.
The size of internal buffers limits themaximum frequency to 163,840
events per second, where an event represents the state change of at
least one pin. As GPIO timestamping is done with the same clock
used for scheduling samples, the synchronization error is in the
same region as the results in Figs. 10 and 11, that is, 2.4 µs at most.

8.4 Power Draw of a Shepherd Node

We expect Shepherd to be used in scenarios without mains power
supply. We measure the current draw of a Shepherd node while
recording data using a Keithley 2604B SMU, supplying the node
with 5V through the micro USB connector. The average current
draw is 345mA with a peak current of 395mA. Using a u-blox M8F
GPS sensor for time synchronization adds another 28mA once the
receiver has acquired the first fix. This allows for a theoretical
recording duration of 19 h from a 10 000mAh USB power bank.

9 RELATEDWORK

Two areas of prior work are related to Shepherd: (i) tools to record
and emulate energy-harvesting environments, and (ii) testbeds for
battery-supported nodes, with or without energy-harvesting capa-
bilities. Debugging techniques for intermittent systems, however,
are orthogonal to our work; for instance, the platform proposed
in [4] may be integrated into Shepherd for energy-interference-
free debugging of distributed batteryless applications. Shepherd
deals with energy harvesting across a collection of nodes, which is
independent of the communication technology used to exchange
data between nodes. By developing additional capelets, Shepherd
can thus be used to experiment not only with active radios, but also
with ambient backscatter [16] or visible light transceivers [14].
Recording and emulation of energy sources. Ekho [10] records
IV curves of a harvester and recreates these characterstics in the lab
as input to a converter-less node. Ekho supports different harvesting
technologies and can reproduce the energy environment of a single
node, but it cannot provide insights into the spatio-temporal energy
environment and behavior of multiple distributed nodes. Shepherd,
instead, offers synchronized recording and emulation of multiple
harvesters. The performance of Ekho has not been characterized
in terms of noise levels, DC accuracy, or dynamic range, making
a quantitative comparison with Shepherd difficult. Nevertheless,
Table 5 lists the performance results provided in [10] along with
the corresponding values for Shepherd, obtained by computing the

mean and standard deviation of the absolute current emulation error
across 24 hours based on the measurements underlying Table 4. We
find that Shepherd achieves orders of magnitude better sampling
rate, nominal current resolution, and current emulation error.

RocketLogger [24] is a hand-held device that enables in-situ mea-
surements across four voltage and two current measurement chan-
nels with high accuracy and wide dynamic range. It also records
temperature, illuminance, etc. to support the analysis of environ-
mental statistics. Similar to Shepherd, RocketLogger aims to bring
the capabilities of high-quality, expensive, wall-powered lab equip-
ment into a compact and portablemeasurement device. Unlike Shep-
herd, RocketLogger cannot replay recorded or generated traces,
and is only applicable to single energy-harvesting devices.

Recent work aims at repeatable indoor testing of solar-powered
nodes by controlling the intensity of a light source (e.g., based on
real illumination data) to induce a solar cell or panel to generate a
desired level of power [9, 19, 27]. Using enclosures for the node or
photovoltaics, it is possible to create repeatable light conditions. All
solutions are specifically designed for a certain battery-supported
platform. By contrast, Shepherd’s design is platform-agnostic and
applicable to batteryless devices and different harvesting sources.
Moreover, it can be used to record the harvesting conditions, which
is not possible with any of the proposed solutions.
Testbeds for embedded wireless nodes. Testbeds for battery-
supported nodes enable development, distributed debugging, and
performance measurements. The capabilities of existing testbeds
range from basic support for reprogramming and serial logging [8]
through synchronized GPIO tracing/actuation [15] and JTAG debug-
ging [25] to power profiling [15] and the generation of controllable
Wi-Fi interference [23]. Shepherd is inspired by these testbeds and
brings many of their services to batteryless, intermittent systems.
In addition, it adopts a fundamentally different approach to provide
services like recording and emulation of spatio-temporal energy
availability that no existing testbed offers.

Indeed, a few papers outline the challenges and desired capabili-
ties of a testbed for energy-harvesting [28] or transiently powered
sensor nodes [1]. The prototypes, however, lack even basic features
such as time synchronization and energy consumption measure-
ments [1] or record and replay of harvesting traces [28]. Shepherd
provides a more powerful solution that is available as an affordable,
portable, and open-source tool for the research community.

10 CONCLUSIONS

Wehave presented Shepherd, a testbed for collections of batteryless
devices that can accurately record and replay the spatio-temporal
characteristics of real energy environments. Shepherd’s modular
design is agnostic to harvesting source, energy storage, node plat-
form, and communication technology; it is affordable and portable;
and our experiments show that it provides adequate accuracy, reso-
lution, sampling rate, and time synchronization. We believe Shep-
herd can be a valuable tool for the research community to investi-
gate exciting questions that have been out of reach so far.

ACKNOWLEDGMENTS

Thisworkwas supported by theGerman Research Foundation (DFG)
within the Cluster of Excellence cfaed (grant EXC 1056) and the
Emmy Noether project NextIoT (grant ZI 1635/2-1).

Shepherd: A Portable Testbed for the Batteryless IoT SenSys ’19, November 10–13, 2019, New York, NY, USA

REFERENCES

[1] Henko Aantjes, Amjad Y. Majid, and Przemysław Pawełczak. 2016. A Testbed for
Transiently Powered Computers. arXiv:arXiv:1606.07623

[2] Naveed Anwar Bhatti and Luca Mottola. 2017. HarvOS: Efficient Code Instru-
mentation for Transiently-Powered Embedded Sensing. In Proceedings of the 16th

ACM/IEEE International Conference on Information Processing in Sensor Networks

(IPSN).
[3] Albert Cohen, Xipeng Shen, Josep Torrellas, James Tuck, Yuanyuan Zhou, Sarita

Adve, Ismail Akturk, Saurabh Bagchi, Rajeev Balasubramonian, Rajkishore Barik,
Micah Beck, Ras Bodik, Ali Butt, Luis Ceze, Haibo Chen, Yiran Chen, Trishul
Chilimbi, Mihai Christodorescu, John Criswell, Chen Ding, Yufei Ding, Sandhya
Dwarkadas, Erik Elmroth, Phil Gibbons, Xiaochen Guo, Rajesh Gupta, Gernot
Heiser, Hank Hoffman, Jian Huang, Hillery Hunter, John Kim, Sam King, James
Larus, Chen Liu, Shan Lu, Brandon Lucia, Saeed Maleki, Somnath Mazumdar, Iu-
lian Neamtiu, Keshav Pingali, Paolo Rech, Michael Scott, Yan Solihin, Dawn Song,
Jakub Szefer, Dan Tsafrir, Bhuvan Urgaonkar, Marilyn Wolf, Yuan Xie, Jishen
Zhao, Lin Zhong, and Yuhao Zhu. 2018. Inter-Disciplinary Research Challenges in

Computer Systems for the 2020s. Technical Report. USA.
[4] Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P. Sample. 2016. An

Energy-interference-free Hardware-Software Debugger for Intermittent Energy-
harvesting Systems. In Proceedings of the 21st International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS).
[5] Alexei Colin and Brandon Lucia. 2016. Chain: Tasks and Channels for Reliable

Intermittent Programs. In Proceedings of the 2016 ACM International Conference on

Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA).
[6] Alexei Colin, Emily Ruppel, and Brandon Lucia. 2018. A Reconfigurable Energy

Storage Architecture for Energy-harvesting Devices. In Proceedings of the 23rd

International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS).
[7] Patricia Derler, Edward A. Lee, and Alberto Sangiovanni Vincentelli. 2012. Mod-

eling Cyber-Physical Systems. Proc. IEEE 100, 1 (2012).
[8] Mun Choon Doddavenkatappa, Manjunath Chan and Ananda A. L. 2011. In-

driya: A Low-Cost, 3D Wireless Sensor Network Testbed. In Proceedings of the

ICST Conference on Testbeds and Research Infrastructures for the Development of

Networks and Communities (TridentCom).
[9] Lars Hanschke, Christian Renner, Jannick Brockmann, Tobias Hamann, Jannes

Peschel, Alexander Schell, and Alexander Sowarka. 2017. Light in the Box:
Reproducible Lighting Conditions for Solar-Powered Sensor Nodes. In Proceedings
of the 15th ACM Conference on Embedded Networked Sensor Systems (SenSys).

[10] Josiah Hester, Lanny Sitanayah, Timothy Scott, and Jacob Sorber. 2017. Re-
alistic and Repeatable Emulation of Energy Harvesting Environments. ACM

Transactions on Sensor Networks 13, 2 (2017).
[11] Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid Prototyping for the Battery-

less Internet-of-Things. In Proceedings of the 15th ACM Conference on Embedded

Networked Sensor Systems (SenSys).
[12] Josiah Hester and Jacob Sorber. 2017. The Future of Sensing is Batteryless, Inter-

mittent, and Awesome. In Proceedings of the 15th ACM Conference on Embedded

Networked Sensor Systems (SenSys).
[13] Neal Jackson, Joshua Adkins, and Prabal Dutta. 2019. Capacity over Capacitance

for Reliable Energy Harvesting Sensors. In Proceedings of the 18th International

Conference on Information Processing in Sensor Networks (IPSN).
[14] Toshihiko Komine and Masao Nakagawa. 2004. Fundamental Analysis for Visible-

Light Communication System using LED Lights. IEEE Transactions on Consumer

Electronics 50, 1 (2004).
[15] Roman Lim, Federico Ferrari, Marco Zimmerling, Christoph Walser, Philipp

Sommer, and Jan Beutel. 2013. FlockLab: A Testbed for Distributed, Synchronized
Tracing and Profiling of Wireless Embedded Systems. In Proceedings of the 12th

ACM/IEEE International Conference on Information Processing in Sensor Networks

(IPSN).
[16] Vincent Liu, Aaron Parks, Vamsi Talla, Shyamnath Gollakota, David Wetherall,

and Joshua R. Smith. 2013. Ambient Backscatter: Wireless Communication out
of Thin Air. In Proceedings of the ACM SIGCOMM Conference.

[17] Brandon Lucia, Vignesh Balaj, Alexei Colin, Kiwan Maeng, and Emily Ruppel.
2017. Intermittent Computing: Challenges and Opportunities. In Proceedings of

the 2nd Summit on Advances in Programming Languages (SNAPL).
[18] Kiwan Maeng and Brandon Lucia. 2018. Adaptive Dynamic Checkpointing

for Safe Efficient Intermittent Computing. In Proceedings of the 13th USENIX

Symposium on Operating Systems Design and Implementation (OSDI).
[19] Robert Margolies, Maria Gorlatova, John Sarik, Gerald Stanje, Jianxun Zhu, Paul

Miller, Marcin Szczodrak, Baradwaj Vigraham, Luca Carloni, Peter Kinget, Ioannis
Kymissis, and Gil Zussman. 2015. Energy-Harvesting Active Networked Tags
(EnHANTs): Prototyping and Experimentation. ACM Transactions on Sensor

Networks 11, 4 (2015).
[20] Sujay Narayana, R. Muralishankar, R. Venkatesha Prasad, and Vijay S. Rao. 2019.

Recovering Bits from Thin Air: Demodulation of Bandpass Sampled Noisy Signals
for Space IoT. In Proceedings of the 18th ACM/IEEE International Conference on

Information Processing in Sensor Networks (IPSN).

[21] Rui Rocha, Jorge Dias, and Adriano Carvalho. 2005. Cooperative Multi-Robot
Systems: A Study of Vision-based 3-D Mapping using Information Theory. In
Proceedings of the 2005 IEEE International Conference on Robotics and Automation

(ICRA).
[22] Fred B. Schneider. 1990. Implementing Fault-tolerant Services Using the State

Machine Approach: A Tutorial. Comput. Surveys 22, 4 (1990).
[23] Markus Schuß, Carlo Alberto Boano, Manuel Weber, Matthias Schulz, Matthias

Hollick, and Kay Römer. 2019. JamLab-NG: Benchmarking Low-Power Wireless
Protocols under Controlable and Repeatable Wi-Fi Interference. In Proceedings

of the 16th International Conference on Embedded Wireless Systems and Networks

(EWSN).
[24] Lukas Sigrist, Andres Gomez, Roman Lim, Stefan Lippuner, Matthias Leubin,

and Lothar Thiele. 2017. Measurement and Validation of Energy Harvesting IoT
Devices. In Proceedings of the EDAA Conference on Design, Automation & Test in

Europe (DATE).
[25] Philipp Sommer and Branislav Kusy. 2013. Minerva: Distributed Tracing and De-

bugging in Wireless Sensor Networks. In Proceedings of the 11th ACM Conference

on Embedded Networked Sensor Systems (SenSys).
[26] Philip Sparks. 2017. The route to a trillion devices: The outlook for IoT investment

to 2035. Technical Report.
[27] Wilson M. Tan, Paul Sullivan, Hamish Watson, Joanna Slota-Newson, and

Stephen A. Jarvis. 2017. An Indoor Test Methodology for Solar-Powered Wireless
Sensor Networks. ACM Transactions on Embedded Computing Systems 16, 3
(2017).

[28] Ashok Samraj Thangarajan, Fan Yang, Wouter Joosen, and Danny Hughes. 2018.
Real-time Distributed In-Situ Benchmarking of Energy Harvesting IoT Devices.
In Proceedings of the 5th ACM Workshop on Middleware and Applications for the

Internet of Things (M4IoT).

http://arxiv.org/abs/arXiv:1606.07623

	Abstract
	1 Introduction
	2 Background
	2.1 Batteryless Device Architecture
	2.2 Characteristics of Harvesting Source
	2.3 Energy-harvesting Architecture

	3 Requirements and Overview
	3.1 A Typical Workflow
	3.2 Key Requirements
	3.3 Shepherd Overview

	4 Shepherd Hardware
	4.1 BeagleBone
	4.2 Capelets
	4.3 Analog Frontend: The Shepherd Cape

	5 Shepherd software
	5.1 Data Handling
	5.2 Time Synchronization

	6 Using Shepherd
	7 Shepherd in Action
	8 Performance Evaluation
	8.1 Time Synchronization Accuracy
	8.2 Electrical Characteristics
	8.3 GPIO Tracing Performance
	8.4 Power Draw of a Shepherd Node

	9 Related Work
	10 Conclusions
	Acknowledgments
	References

