
One for All, All for One: Toward Efficient Many-to-Many
Broadcast in Dynamic Wireless Networks

Fabian Mager∗
Networked Embedded Systems Group

TU Dresden, Germany
fabian.mager@tu-dresden.de

Carsten Herrmann∗
Networked Embedded Systems Group

TU Dresden, Germany
carsten.herrmann@tu-dresden.de

Marco Zimmerling
Networked Embedded Systems Group

TU Dresden, Germany
marco.zimmerling@tu-dresden.de

ABSTRACT
Many applications such as autonomous swarming drones and sys-
tem services like data replication need to exchange data among
many or all nodes in a network. However, wireless many-to-many
broadcast has thus far only been studied theoretically or in simula-
tion, and practical solutions hardly meet the requirements of emerg-
ing applications, especially in terms of latency. This paper presents
Mixer, a communication primitive that provides fast and reliable
many-to-many broadcast in dynamic wireless multi-hop networks.
Mixer integrates random linear network coding with synchronous
transmissions to simultaneously disseminate all messages in the
network. To deliver the performance gains our approach enables,
we design Mixer’s protocol logic in response to the physical-layer
characteristics and the theory of network coding. First results from
testbed experiments demonstrate that, compared with the state of
the art, Mixer is up to 65 % faster and reduces radio-on time by up
to 50 %, while providing a message delivery rate above 99.9 %.

1 INTRODUCTION
All-to-all broadcast solves the following problem: In an N -node
network, where each node has a message, disseminate all messages
to all nodes. The more general case of many-to-many broadcast
handles any initial distribution of M messages to (source) nodes
and any desired final distribution of messages to (sink) nodes.

This problem is relevant because many applications and system
services need to exchange information among many or all nodes in
a network. Examples include data replication and leader election
for fault tolerance [26], or exchange of sensor readings, local state,
etc. to enable self-adaptive systems like swarming drones [3]. In
fact, certain control problems are only tractable if each node can
make decisions with knowledge of the whole system state [4].

Despite its relevance, wireless many-to-many broadcast has thus
far only been studied theoretically [10] or in simulation [9]. Instead,
we aim to solve the problem in practical wireless networks. Our
work is driven by the needs of emerging cyber-physical applica-
tions [3, 11, 12] and industrial control [2, 22]:
∗Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotWireless’17, October 16, 2017, Snowbird, UT, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5140-9/17/10. . . $15.00
https://doi.org/10.1145/3127882.3127884

Fast and reliable: To minimize the impact on application per-
formance and to keep up with the dynamics of physical pro-
cesses, many-to-many broadcast should be as fast as possible
and message losses are only tolerable in exceptional cases.
Dynamic multi-hop topology: Rotating parts andmobile de-
vices add to the dynamics of wireless networks, and multi-hop
communication is either beneficial or a must [22].
Sizable payloads: In control, payloads are tens of bytes [11,
22]. Other applications or replication may have larger payloads.
Low power: Battery-powered and energy-harvesting devices
are often desirable (e.g., in process and building automation [2]).
Size and weight constraints of drones call for small batteries as
well as low-power wireless radios and microcontrollers [11].

Meeting these requirements is challenging. Routing, for example,
becomes increasingly complex and inefficient as the number of
sinks and the network dynamics increase [23]. We thus strive for a
solution that operates independently of the number of sinks and the
time-varying network topology. One possibility is to map the many-
to-many broadcast onto a sequence of Glossy floods [8], where each
source node is assigned a time slice in which it floods one packet
to all other nodes in the network (see Sec. 2). For disseminating a
single packet using half-duplex radios, Glossy achieves almost the
theoretical minimum latency and provides a packet delivery rate
(PDR) higher than 99.9 % even if nodes are moving [7, 8]. However,
the overall latency increases linearly with the number of messages,
because a flood can only start after the previous one is finished [7].
Contribution and roadmap.We present Mixer, a many-to-many
broadcast primitive that breaks this linear scaling. The key idea is
to overlay all floods by letting nodes “mix” packets using random
linear network coding (RLNC) [1, 13]; that is, nodes send random
linear combinations of received packets to simultaneously dissemi-
nate all messages in the network. Theoretical results indicate that
this approach outperforms sequential flooding and achieves the
best known bounds in highly dynamic networks [10]. To deliver
tangible performance gains in practical wireless networks without
sacrificing PDR, this paper makes the following contributions:

• Sec. 2 illustrates the intuition underlying our approach, and
derives the challenges in utilizing its potential in a practical
solution that meets the above application requirements.
• Sec. 3 describes how we address these challenges by design-
ing Mixer in response to the characteristics of the wireless
physical layer and the theory of RLNC.
• Sec. 4 evaluates a Mixer prototype. To compare against the
state of the art, we implement Mixer on an MSP430-based
platformwith a 2.4 GHz IEEE 802.15.4 radio, yet our design is
also applicable to other wireless technologies. Results from

https://doi.org/10.1145/3127882.3127884

A B C

•
a
−→ ◦ ◦

◦
a
←− •

a
−→ ◦

◦
b
←− •

b
−→ ◦

•
b
−→ ◦

b
←− •

◦ ◦
c
←− •

◦
c
←− •

c
−→ ◦

activity in each slot coefficients in
(• = sender, ◦ = receiver) A B C

1:
•

a
−−−−−−→ ◦ ◦

100 100 −
− 010 −
− − 001

2:
◦

a+b
←−−−−−− •

a+b
−−−−−−→ ◦

100 100 110
010 010 −
− − 001

3:
•

a+b
−−−−−−→ ◦

a+b+c
←−−−−−− •

100 100 110
010 010 −
− 001 001

4:
◦

b+c
←−−−−−− •

b+c
−−−−−−→ ◦

100 100 100
010 010 010
001 001 001

Figure 1: In a 2-hop network, nodes A, B, andCwant to share
3messages. Sequential flooding viaGlossy (left) takes 6 slots.
Overlaying floods via network coding (right) can achieve the
same in 4 slots, assuming that B captures C’s packet in slot 3.

an all-to-all scenario with 10–110-byte payloads on the Flock-
Lab testbed [21] show that, compared with sequential Glossy
floods, Mixer is on average 40-65 % faster, reduces average
radio-on time by up to 50 %, and provides a PDR above 99.9 %.

To our knowledge, Mixer is the first practical solution that uses
RLNC for many-to-many broadcast in dynamic wireless networks.
We review related work in Sec. 5, and end the paper in Sec. 6 with
concluding remarks and an outline of our current research agenda.

2 MOTIVATION AND CHALLENGES
Mixer integrates synchronous transmissions with RLNC. This sec-
tion explains the intuition underlying our approach, and highlights
the challenges in realizing its potential in practice.
Synchronous transmissions.Two properties of wireless networks
complicate efficient and reliable communication: time-varyingmulti-
hop topologies and the broadcast nature of the wireless medium
causing packet collisions. While traditional solutions try to avoid
collisions using, for example, carrier sensing or scheduling, recent
solutions take advantage of collisions [8, 25]. In particular, if multi-
ple well-synchronized senders transmit identical packets, a receiver
can correctly decode the combined signal with high probability due
to a combination of several physical-layer effects [27].

One solution that exploits this observation is Glossy, providing
one-to-all communication in multi-hop networks of off-the-shelf
IEEE 802.15.4 devices [8]. In Glossy, one node initiates the commu-
nication by sending a packet. Nodes receiving the packet retransmit
it synchronously with sub-microsecond accuracy, enabling other
nodes to receive and relay the packet. The transmissions are syn-
chronized on the fly: A careful design and implementation ensure
that each node transmits a minimal, constant time after reception.
The result is a slotted communication scheme, where nodes operate
without knowledge of the time-varying multi-hop topology. Glossy
achieves almost the minimum latency for disseminating a single
packet using half-duplex radios and provides a PDR above 99.9 %.
Many-to-many broadcast using sequential floods. The num-
ber of slots s in a Glossy flood needs to be chosen in advance based
on the maximum network diameter (in hops) and the desired re-
liability [8]. Thus, without knowledge of the network topology, if
we want to disseminateM messages using M back-to-back Glossy
floods, we need in total s ·M slots. For example, as shown in Fig. 1

(left), it takes 6 slots to disseminate 3 messages in a 2-hop network.
We see that the number of slots and latency scale linearly inM .

This linear scaling appears suboptimal: Every message is sent
multiple times, forming a simple kind of repetition coding.While we
cannot do better than this if we consider each message individually,
we can break the linear scaling by considering multiple messages
together, that is, by overlaying the floods of all source nodes.
Many-to-many broadcast using overlayed floods. This is the
main idea behind Mixer. As illustrated in Fig. 1 (right), rather than
just retransmitting a received packet (of one flood), nodes transmit
linear combinations of multiple payloads (of several floods). In slot
2, for example, node B sends the sum of A’s packet a, which it
received in slot 1, and its own message b. Node A can then subtract
its payload a from the received sum a + b to obtain b. Using its
own and previously received packets, every node can reconstruct
all messages by adding and subtracting the right components. This
way, it takes only 4 instead of 6 slots to disseminate the 3 messages.
Network coding. The concept of (re-)combining multiple packets
before or during transmission is known as network coding (NC) [1].
We use digital network coding, where a sender computes the combi-
nation before transmission, as this does not require any changes
to the physical layer. Instead, any flavor of physical-layer network
coding [14, 24], where the combination is built by mixing signals
over the wireless channel, requires significant extensions that are
challenging and not implemented in off-the-shelf devices. Moreover,
we realize that this feature is not necessarily needed; for example,
in slot 3 (see Fig. 1), B only needs the packet from C since it can
build the other packet by itself from previously received packets.

To be able to reconstruct all messagesm1, . . . ,mM , a receiver
needs to know which messages are combined in each packet pi .
This information is described by the corresponding coding vector
ci = (ci1, . . . , ciM) such that pi ’s payload equals

∑
k cikmk . In a

fully deterministic system, all coding vectors can be determined
beforehand and hardcoded into each node. However, in the face of
unpredictable packet losses in real wireless networks, the only safe
way is to embed the coding vector into each packet. This approach
also has the advantage that a sender can pick the coefficients ran-
domly, known as RLNC [13], without any additional information
(e.g., about the network topology). This property makes RLNC very
appealing for dynamic wireless networks, which we target.

It remains to discuss how a node can decode the original mes-
sages from a set of received packets. Since the packets contain linear
combinations with known coefficients, the decoding problem can
be stated as a linear system of equations, where the coding vectors
form the rows of the coefficient matrix (see Fig. 1). If this matrix
has full rank, then the system has a unique solution, which can be
found by known algorithms like Gaussian elimination.
Challenges. To obtain the above benefits in a practical many-to-
many solution, we must address at least the following challenges:

When should a node send or listen? Since nodes randomly combine
messages, they typically send different packets. Thus, a common re-
ceiver can successfully receive one of the packets only if the capture
effect occurs [19]. In IEEE 802.15.4 networks, capture happens if the
SINR exceeds 3 dB and the strongest packet arrives no later than
128 µs after the first packet [28], which corresponds to the air time
of the synchronization header. However, due to the SINR condition,

...SFD... Flags SenderId SlotNo CodingVector Payload CRC

6 1 1 2 Sv 2Sp

Figure 2: Mixer packet format. Parts in gray are defined by the
IEEE 802.15.4 standard; CRC is generated by the radio. Sizes in bytes.

A

B

SFD (slot k) SFD (slot k+1)

Ta Tp

Ts

finalize Tx packet,
poll Tx start

receive,
process

prepare next
Tx packet

Tx decision

Tx decision

init timeout,
enable Rx

time
buffer

time
buffer

Figure 3: Tasks within a Mixer slot shown for two nodes A
and B in receive (Rx) and transmit (Tx) mode, respectively.

the probability of capture drops rapidly as the number of senders
increases. How can a node locally decide whether to send or listen
in a slot, maximizing spatial reuse without destroying capture?

How to ensure synchronous transmissions without a global clock?
To meet the timing condition of capture, nodes must communicate
in a globally slotted fashion. Unlike Glossy, however, nodes need
to spend more and varying amounts of time on processing in each
slot, which impairs synchronization in the face of clock drift.

What should a node send? A packet is innovative for a node if it is
linearly independent from previously received packets. To achieve
low latency, we need to find a policy that allows senders to randomly
build packets that are likely innovative for their neighbors.

How to achieve an efficient runtime operation? Network coding
improves the utilization of the wireless medium (i.e., reduces the
number of slots), but requires nodes to store and process the cod-
ing vector and payload bytes of the packets. Limited memory and
compute power on embedded devices may hinder harnessing the
benefits (e.g., by blowing up the length of the slots), so we need to
design efficient coding and decoding strategies. In addition, nodes
should locally detect when they are no longer needed for the dis-
semination process, so they can turn off their radio to save energy.

3 DESIGN AND IMPLEMENTATION
Mixer is a many-to-many broadcast primitive for dynamic wireless
multi-hop networks, such as swarming drones [11] and wireless
control networks [2, 22]. Nodes in these networks are often em-
bedded devices with limited memory, compute power, and energy.
We design Mixer for IEEE 802.15.4, but in principle our approach
works with any physical layer featuring capture (e.g., Wi-Fi).

Mixer sits between the physical layer and a high-layer protocol
like LWB [7] that informs all nodes about the initial and final
distributions of theM messages to the N nodes before Mixer starts.
Distributed operation and synchronization. Using Mixer, each
many-to-many broadcast, called round, is divided into adjacent slots.
As shown in Fig. 3, each slot has the same fixed length Ts , which
accounts for the air time Ta of one packet and processing time Tp .

One node starts the round by transmitting its message. Nodes
receiving the packet take timestamps when they receive the start-
of-frame delimiter (SFD) field, which is part of the synchronization
header (see Fig. 2) and defines the beginning of a slot. As detailed

Algorithm 1 semi-coordinated transmission

d = 1 + num_neiдhbors ▷ local density (from history)
owner = (slot_no + 1)modN ▷ determine owner of next slot
if owner =my_node_id then ▷ my slot

pt = 1
else if Tx in current slot then ▷ don’t transmit twice

pt = 0
else if owner is neighbor then ▷ foreign slot

pt = 0
else ▷ shared slot

pt = 1 / (d + 1)
end if

below, some nodes will decide to send in the next slot, allowing
other nodes to capture SFD events. To align their transmissions, they
perform meticulous timer polling. This way, nodes progressively
establish a slotted communication. Nodes detect missing SFD events
through timeouts, and estimate the missing timestamps based on
previous events. If a node receives no packet for several consecutive
slots (around ten), the estimations become inaccurate. In this case,
a node drops out and resynchronizes with the next received packet.

As shown in Fig. 3, a node performs three main tasks in each
slot: packet processing, transmit decision, and preparation for the
next slot. We next discuss Mixer’s transmission policy and then
packet processing for innovative coding and efficient decoding.
Adaptive transmission policy. Our transmission policy aims to
maximize the number of received packets per slot. To this end, the
number (and selection) of transmitters should be well balanced—
high enough (and spatially distributed) to reach many nodes, but
not too high so capture can occur. Since real-world and especially
dynamic networks have a varying node density, a fixed transmit
probability performs poorly, as we demonstrate in Sec. 4. Therefore,
each Mixer node maintains a list of received SenderIds (see Fig. 2)
within the last H slots. Using this sliding-window history infor-
mation, which is discarded at the end of a round, nodes monitor
their current neighborhood to drive an adaptive transmission policy
whose pseudocode is given in Algorithm 1. This policy updates the
transmit probabilitypt of a node and also incorporates a kind of local
round-robin scheduling of selected slots. The level of determinism
incurred by this policy increases with node density: In high-density
regions nodes use stronger coordination than in sparsely populated
areas. This semi-coordinated transmission scheme outperforms any
fixed transmit probability we tested (see Sec. 4).

If a node decides not to transmit, it enters receive mode and sets
a timeout to stop listening if no valid packet arrives within the slot.
Building innovative packets. A sender prepares a packet using
RLNC: it adds every row (i.e., packet) from its matrix to the packet
with a probability of 1/2. In Mixer we add two features somewhat
restricting the randomness to improve average performance. The
first one is based on the insight that with high probability an inno-
vative packet is also innovative for a node’s neighborhood. Thus,
a node adds every innovative packet immediately to the prepared
transmit packet such that the innovation gets relayed with the next
transmission for sure. Further, a node always adds its own message
until it has received three packets that contain it. In this way, every

10 30 50 70 90 110
Payload size [bytes]

0

200

400

600

800

L
at

en
cy

[s
lo

ts
]

RLNC 2−1

RLNC 8−1

RLNC 32−1

M-Glossy
Mixer

(a) Number of slots.

10 30 50 70 90 110
Payload size [bytes]

0

1000

2000

3000

4000

L
at

en
cy

[m
s]

(b) End-to-end latency.

10 30 50 70 90 110
Payload size [bytes]

0

1000

2000

3000

4000

R
ad

io
-o

n
ti

m
e

[m
s]

(c) Radio-on time.

10 30 50 70 90 110
Payload size [bytes]

0

10

20

30

T
h

ro
u

gh
p

u
t

[k
b

it
/s

]

(d) Throughput.
Figure 4: Performance of Mixer, M-Glossy, and naïve RLNC configurations on the FlockLab testbed for different payload sizes.
Bars show the 25th and 75th percentiles. Mixer trades communication efficiency for compute power, outperforming M-Glossy across all metrics.

node publishes its own message as soon as possible, which leads to
a fast-growing coding potential at the beginning of a round.
Efficient runtime operation. We make four key design and im-
plementation decisions to achieve an efficient operation of Mixer.

First, we choose to perform all computations on finite field GF(2),
allowing for an efficient implementation of all operations on stan-
dard hardware. As a result, the coding vector contains one bit for
each of theM messages to be exchanged. Hence, its size isM bits,
which translates into Sv = ⌈M/8⌉ bytes in practice (see Fig. 2).

Second, we use incremental Gaussian elimination to process re-
ceived packets and decode the original messages. Every node keeps
a matrix of coding vectors and stores the corresponding payloads
separately. After receiving a packet, a node uses the packet’s coding
vector to check whether it is innovative. To amortize the cost over
all received packets, nodes keep the matrix of coding vectors in
row echelon form, and incorporate the new coding vector into the
matrix through step-wise row reduction. If the packet is innovative,
then the number of rows of the matrix, which equals its rank due to
its particular form, increases. Once the matrix reaches full rank, the
original messages can be obtained in a final elimination step. This
approach leads to low processing times and bounds the number of
packets a node needs to store by the number of messagesM .

Third, we try to parallelize radio and processing activities. As
shown in Fig. 3, in a slot where a node receives a packet, processing
can only commence after reception is completed. Instead, if a slot is
used for transmission, a node can prepare the next packet while the
current one is still being sent by the radio. Using the time budget
of transmit slots in this way saves remarkable processing time in
receive slots where a node decides to transmit in the next slot.

Fourth, we use the history informationmentioned above to detect
if all nodes in an area have full rank. A node indicates that it has
full rank in the Flags field of the packets it transmits (see Fig. 2). If
all neighbors have full rank, a node concludes that it is no longer
helpful for the communication and turns itself off to save energy.

4 EVALUATION
Settings andmetrics.We prototype Mixer on the TelosB platform,
which features anMSP430microcontroller (MCU) running at 4MHz
and an IEEE 802.15.4 radio operating in the 2.4 GHz band. We run
experiments on N = 27 nodes of the FlockLab testbed [21], which
form a 5-hop network using the maximum transmit power of 0 dBm.

We consider an all-to-all scenario, where each node starts with
one message (i.e.,M = N). We test different payload sizes between
10 and 110 bytes in different runs. Each run lasts for 10 minutes.

We compare Mixer with the state-of-the-art solution that uses
sequential Glossy floods, called M-Glossy. We also test three naïve
RLNC configurations where each node adds any of its previously
received packets with a probability of 1/2 and sends with a fixed
probability of 1/2, 1/8, or 1/32.We carefully configure every protocol
so that they all achieve a PDR of about 99.9 %.

We consider three performance metrics. Latency L is the time or
the number of slots from the beginning of a round until all messages
are received (or decoded in case of Mixer). Throughput is computed
as T = M ·Sp /L where Sp is the payload size. Radio-on time is the
accumulated time the radio is turned on during a round. We report
averages over all nodes and rounds, and 25th and 75th percentiles.
Results. Fig. 4 plots the performance of Mixer, M-Glossy, and the
three naïve RLNC configurations for different payload sizes. We
find that Mixer achieves the best results in all metrics.

To understand why, we first have a look at latency in terms of
number of slots, which is a measure of communication efficiency.
We see from Fig. 4a that Mixer needs significantly fewer slots than
M-Glossy and is nearly unaffected by the payload size. Larger pack-
ets are more susceptible to transmission failures due to a longer air
time. To counteract this effect, we had to increase the number of
slots per flood in M-Glossy, from 10 slots for 10–50 bytes to 12 slots
for 70 bytes and finally to 14 slots for 70–110 bytes. The fact that
Mixer contains random processes leads to some scattering around
the average values while M-Glossy is very predictable.

Fig. 4b plots latency in milliseconds. This is essentially the num-
ber of slots multiplied by their length, which accounts for the pro-
cessing overhead. Because M-Glossy’s processing overhead is less
than 100 MCU cycles, its latency is dominated by the packet air
time, which increases with the payload size. By contrast, Mixer has
a larger processing overhead that grows with the payload size, but
needs considerably fewer slots. Hence, Mixer trades communica-
tion efficiency for compute power, which is an important property.
Overall, Mixer reduces average latency by 30–40 % compared with
M-Glossy, which translates into a 40–65 % average speedup.

The energy consumption of a node is determined by its MCU
and radio activities. Both Mixer and M-Glossy keep the MCU on
during a slot, which allows to derive theMCU time directly from the
latency in Fig. 4b. As Fig. 4c shows, Mixer outperforms M-Glossy
in terms of radio-on time with increasing payload size. This result
follows from the fact that Mixer needs fewer slots than M-Glossy
and that nodes turn themselves off when they are no longer needed.

Looking at Fig. 4d, we see thatMixer provides the highest through-
put, outperforming M-Glossy by 58–91%. Throughput with Mixer

increases from 10.2 kbit/s with 10 bytes to 26.5 kbit/s with 110 bytes.
M-Glossy’s throughput peaks at 15.3 kbit/s with 50-byte payloads.

Finally, we learn from the results of the naïve RLNC configu-
rations that choosing the right transmit probability is important.
Transmitting with a probability of 1/2 is too aggressive: the number
of transmitters per slot is too high for capture to work. As a result,
packets are received with low probability such that rounds require
significantly more slots. On the other hand, a probability of 1/32
is too low: many slots are unused in this case. A probability of 1/8
performs somewhat better and provides a performance comparable
to M-Glossy. We suppose there is a sweet spot for this parameter
that depends on the average node density. However, nodes in dense
areas should be more reluctant than nodes in sparsely populated
areas. Mixer’s semi-coordinated transmission policy automatically
adapts to different local node densities and provides the best results.

5 RELATEDWORK
Ahlswede et al. introduced network coding, showing that it achieves
the multicast capacity of wireline networks [1]. It was found that
these bounds can be reached using linear codes, and that encoding
and decoding can be done in polynomial time [16, 20]. This also
holds if nodes pick random coding coefficients [13]. These works
form the theoretical foundation of RLNC, which we exploit in Mixer.

Network coding has been extensively used in wireless networks,
albeit for different purposes than in Mixer. Among the practical
works, COPE [15] and MORE [5] are the first implementations of
network coding focusing on one-to-one and one-to-many traffic,
respectively. Other recent multicast protocols like Pacifier [17]
improve on MORE in Wi-Fi networks, and Pando [6] uses fountain
codes to provide fast one-to-all data dissemination in IEEE 802.15.4
networks. Compared with Mixer, these works target stationary
wireless networks and focus on different communication patterns.

Chaos [18] is a primitive for computing network-wide aggre-
gates in practical wireless networks. By contrast, many-to-many
broadcast has only been studied in theory [10] or in simulation [9],
presenting encouraging optimality results and performance gains
using RLNC. Mixer bridges the gap between theory and practice.

6 CONCLUSIONS AND NEXT STEPS
A new breed of cyber-physical applications is currently emerging
that either requires or would greatly benefit from an efficient and re-
liable many-to-many broadcast primitive to unfold its full potential.
In this paper, we have reported on our ongoing efforts to design
such a communication primitive, called Mixer, for dynamic em-
bedded wireless networks. Our preliminary results are promising,
demonstrating that our approach of integrating synchronous trans-
missions with random linear network coding provides significant
performance gains over the state of the art and high reliability.

Nevertheless, we still see a huge potential for even higher per-
formance gains by improving Mixer’s design and implementation
along the following dimensions. First, we are conceiving mecha-
nisms to accelerate both the initial and the final phase of a Mixer
round. Initial results from simulations are promising, showing that
our mechanisms do reduce the number of slots. Second, additional
code optimizations to, for example, further parallelize the radio and
processing activities, will make each slot shorter. Third, we intend

to exploit an important property of Mixer, its ability to translate
higher compute power into shorter communication latency and
higher throughput, which is not possible with Glossy. To this end,
we are porting Mixer to state-of-the-art ARM Cortex-M based plat-
forms, using packet traces collected from testbeds to extrapolate
the performance one would get if the outdated TelosB was replaced.
Acknowledgments.We thank our anonymous reviewers for their
useful feedback. This work was supported by the German Research
Foundation (DFG) within cfaed and SPP 1914, project EcoCPS.

REFERENCES
[1] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung. 2000. Network Information Flow.

IEEE Trans. Inf. Theory 46, 4 (2000).
[2] J. Åkerberg, M. Gidlund, and M. Björkman. 2011. Future Research Challenges

in Wireless Sensor and Actuator Networks Targeting Industrial Automation. In
INDIN.

[3] BBC. 2017. US military tests swarm of mini-drones launched from jets. http:
//www.bbc.com/news/technology-38569027. (2017).

[4] V. D. Blondel and J. N. Tsitsiklis. 2000. A Survey of Computational Complexity
Results in Systems and Control. Automatica 36, 9 (2000).

[5] S. Chachulski, M. Jennings, S. Katti, and D. Katabi. 2007. Trading Structure for
Randomness in Wireless Opportunistic Routing. In SIGCOMM.

[6] W. Du, J. C. Liando, H. Zhang, and M. Li. 2015. When Pipelines Meet Fountain:
Fast Data Dissemination in Wireless Sensor Networks. In SenSys.

[7] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. 2012. Low-power Wireless
Bus. In SenSys.

[8] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. 2011. Efficient Network
Flooding and Time Synchronization with Glossy. In IPSN.

[9] C. Fragouli, J. Widmer, and J. Le Boudec. 2008. Efficient Broadcasting Using
Network Coding. IEEE/ACM Trans. Netw. 16, 2 (2008).

[10] B. Haeupler and F. Kuhn. 2012. Lower Bounds on Information Dissemination in
Dynamic Networks. In DISC.

[11] S. Hayat, E. Yanmaz, and R. Muzaffar. 2016. Survey on Unmanned Aerial Vehicle
Networks for Civil Applications: A Communications Viewpoint. IEEE Commun.
Surveys Tuts. 18, 4 (2016).

[12] H. Hellwagner and C. Bettstetter. 2016. Networking research challenges in
multi-UAV systems. https://bettstetter.com/uav-networking-challenges/. (2016).

[13] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong. 2006. A
Random Linear Network Coding Approach to Multicast. IEEE Trans. Inf. Theory
52, 10 (2006).

[14] S. Katti, S. Gollakota, and D. Katabi. 2007. Embracing Wireless Interference:
Analog Network Coding. In SIGCOMM.

[15] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard, and J. Crowcroft. 2006. XORs in
the Air: Practical Wireless Network Coding. In SIGCOMM.

[16] R. Koetter and M. Medard. 2003. An Algebraic Approach to Network Coding.
IEEE/ACM Trans. Netw. 11, 5 (2003).

[17] D. Koutsonikolas, Y. C. Hu, and C.Wang. 2012. Pacifier: High-throughput, Reliable
Multicast Without “Crying Babies” in Wireless Mesh Networks. IEEE/ACM Trans.
Netw. 20, 5 (2012).

[18] O. Landsiedel, F. Ferrari, and M. Zimmerling. 2013. Chaos: Versatile and Efficient
All-to-all Data Sharing and In-network Processing at Scale. In SenSys.

[19] K. Leentvaar and J. Flint. 1976. The Capture Effect in FM Receivers. IEEE Trans.
Commun. 24, 5 (1976).

[20] S. R. Li, R. W. Yeung, and N. Cai. 2003. Linear Network Coding. IEEE Trans. Inf.
Theory 49, 2 (2003).

[21] R. Lim, F. Ferrari, M. Zimmerling, C. Walser, P. Sommer, and J. Beutel. 2013.
FlockLab: A Testbed for Distributed, Synchronized Tracing and Profiling of
Wireless Embedded Systems. In IPSN.

[22] M. Luvisotto, Z. Pang, and D. Dzung. 2016. Ultra High Performance Wireless
Control for Critical Applications: Challenges and Directions. IEEE Trans. Ind.
Informat. 13, 3 (2016).

[23] L. Mottola and G. P. Picco. 2011. MUSTER: Adaptive Energy-Aware Multisink
Routing in Wireless Sensor Networks. IEEE Trans. Mobile Comput. 10, 12 (2011).

[24] B. Nazer and M. Gastpar. 2011. Compute-and-Forward: Harnessing Interference
Through Structured Codes. IEEE Trans. Inf. Theory 57, 10 (2011).

[25] H. Rahul, H. Hassanieh, and D. Katabi. 2010. SourceSync: A Distributed Wireless
Architecture for Exploiting Sender Diversity. In SIGCOMM.

[26] F. B. Schneider. 1990. Implementing Fault-tolerant Services Using the State
Machine Approach: A Tutorial. ACM Comput. Surv. 22, 4 (1990).

[27] M. Wilhelm, V. Lenders, and J. B. Schmitt. 2014. On the Reception of Concurrent
Transmissions in Wireless Sensor Networks. IEEE Trans. Wireless Commun. 13,
12 (2014).

[28] D. Yuan and M. Hollick. 2013. Let’s Talk Together: Understanding Concurrent
Transmission in Wireless Sensor Networks. In LCN.

http://www.bbc.com/news/technology-38569027
http://www.bbc.com/news/technology-38569027
https://bettstetter.com/uav-networking-challenges/

	Abstract
	1 Introduction
	2 Motivation and Challenges
	3 Design and Implementation
	4 Evaluation
	5 Related Work
	6 Conclusions and Next Steps
	References

