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Abstract—Experimentation with computer networks under
realistic conditions is a necessary step in debugging, profiling and
validation towards real deployments and applications. Although
the definition of relevant experimentation scenarios is usually
relatively straightforward, their implementation and execution
are unfortunately difficult and tedious. Generation of extensive
experiment documentation assuring replicability is increasingly
challenging even for experienced researchers.

In this paper, we explain how a typical experimentation
workflow can be supported using properly selected tools and
components from the DevOps ecosystem, leading to repeatable,
well-defined measurements. We start with a general approach
using ad-hoc setups. Next, we show how the featured set of tools
can be used with, and benefit from, existing testbeds.

Index Terms—Experimentation, Wireless Networks, Monitor-
ing, Wireless Testbeds

I. INTRODUCTION

Experimentation allows studying the behavior of networks
without any simplifications under real-world conditions. Un-
fortunately, even having the definition of relevant experimen-
tation scenarios, performing meaningful experiments requires
numerous skills and significant effort; the process is complex
and time-consuming [1], [2]. In addition, documenting all
the necessary steps of an experiment in order to assure its
repeatability (same team, same experimental setup) and repli-
cability (different team, same experimental setup) becomes
increasingly difficult even for experienced researchers. This is
a major problem across the scientific community, which has
recently sparked intense discussions [3], [4], [5].

We discuss how to support the complete workflow for
experimentation, starting just from bare-metal commercial off-
the-shelf (COTS) hardware and ending with an analysis of
measurement data using tools that aid repeatability. We focus
on experimentation in ad-hoc scenarios as the more general
case which also requires management of the hardware. We
show how the approach can be helpful to experimentation
using testbeds, benefiting from management capabilities and
large-scale node deployment. We re-evaluate prevailing tools
for experimentation under new aspects like wide applicability,
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community support, and workflow coverage. We present a
selection of tools from the DevOps community and show how
they cover the whole workflow of a typical experiment, closing
the gap between ad-hoc and large-scale testbed based exper-
imentation. We provide short examples of how the tools can
be used to solve the typical tasks involved in experimentation.
We provide a well-documented implementation of an example
experiment1 using the discussed tools.

II. DEVOPS APPROACH

DevOps is a set of software engineering practices that have
been proven to improve the software release cycles, software
quality and ability to get rapid feedback on product develop-
ment [6]. This is achieved by unifying software development
(Dev), traditionally responsible for contributing new features,
with software operation (Ops), responsible for keeping the
system running in production. DevOps practices are strongly
advocating automation at all steps of the development and
deployment process [7].

The DevOps community has proposed a large set of tools,
which have been adopted by a large number of users and main-
tainers. The tools support all aspects of automation, testing,
and deployment. The Puppet report [6] states the increase in a
number of survey respondents working in DevOps teams from
16% in 2014 to 27% in 2017.

Let us consider experimental research in terms of DevOps
practices: Researchers develop new solutions (i.e. Dev) and
evaluate these solutions with experiments (i.e. Ops). The
explicitness and the high level of automation, that comes with
DevOps practices, helps to tackle some of the major challenges
in experimentation, like replicability. Additionally, the broad
scope of DevOps tools allows researchers to apply the obtained
skills not only to experimentation, increasing the appeal to get
familiar with them as opposed to special purpose tools.

III. EXPERIMENT EXECUTION WORKFLOW

Experiments in wireless network research often share a
common setup, shown in Fig. 1. Examples include research
in Internet of Things (IoT) [8], co-existence [9] or flexible
radio architectures [10]. The node is a COTS general purpose

1Publicly available at GitHub under https://github.com/mchwalisz/walker
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Fig. 1. General experiment architecture

computer, e.g. PC, single board device or even virtual machine.
Naturally, the hardware needs to be selected to meet the
requirements of the respective experiment.

The nodes are equipped with the device under tests (DUTs),
like Software Defined Radio (SDR) platforms or PCI Wi-Fi
cards. They are used to control the equipment, applications
and to collect relevant measurements. Together, the nodes form
the experimental networks using the selected radio equipment
(DUTs). The nodes are connected to an experiment controller
machine to establish a reliable control channel. We assume the
nodes have an Ethernet interface, for connection to the control
network, and are able to run the Linux operating system (OS).

There are setups involving resource constraint devices run-
ning a dedicated operating systems (like Contiki or FreeRTOS)
that do not meet requirements and are not directly supported
by the discussed workflow and tools. Fortunately, such nodes
are often connected to an observer or gateway node (Linux
machine), which can provide the necessary support. A detailed
discussion of such setup is beyond the scope of this paper.

A common workflow, shown in Fig. 2, is comprised of the
sequence of activities to conduct an experiment. The task of
the experimenter is to bootstrap and initialize the hardware,
deploy the necessary software, orchestrate the whole exper-
iment by executing commands on each node in the correct
order and analyze the results. Focusing on local experiments,
we assume physical access to the hardware.

Operating System Deployment

Software Deployment

Data Analysis

Image Preparation

Bootstrapping of 
Experimental Hardware

Execution of Experiments

Image Deployment

Fig. 2. Experiment execution workflow

A. Bootstrapping of Experimental Hardware

The goal of this step is to prepare the boot manager
on the nodes in order to minimize the manual interaction
with the node. After bootstrapping, the nodes should support
remote management of the deployment and boot process
of the experiment-specific OS from the experiment controller
machine. An optional, but very useful, feature is the ability to
externally control the power state of the nodes, which allows
for recovery from hard failure without manual intervention.
Bootstrapping usually needs to be done only once per node.

B. Operating System Deployment

Having prepared the hardware, the experimenter is required
to select a Linux OS distribution, that supports the software
required to perform the experiments.

Following that, there are two distinct problems that need to
be solved:
• How to prepare OS images?
• How to deploy the selected image(s) on a set of nodes?

Image Preparation: The lack of precise information
about the OS image can cause problems while trying to repeat
an experiment [5]. It is therefore important to start from a
well-defined base image and carefully document all installed
software. One approach is to download the default OS images
provided by Linux distributions, like Ubuntu. This requires
that all additional software, like extensions or modifications to
the standard Linux kernel or measurement tools (e.g. iperf3)
is deployed at the start of the experiment. This can take
significant time with big libraries and applications.

The other option is to build customized OS images. It helps
to minimize the overall effort for the experimenter, as the OS
image can be build once and reused for other experiments. It
allows others to review the configuration files that led to the
OS image or re-use the customized binary. The rebuilding of
OS images comes with some overhead, creating a trade-off: the
more software is included in the prepared OS image, the less
time it takes to start the experiment, but the more frequent it is
necessary to rebuild the image. It is thus advisable to include
only standard and slowly changing parts of the software stack
in the OS image.

It should be possible to flexibly choose the OS and to modify
the image to meet the needs of the experiment. The chosen
OS, naturally, needs to support attached networking hardware,
experiment-specific devices under test and software.

Image Deployment: The goal of this step is to boot
the selected OS on a set of devices. After deployment, the
experimenter should have exclusive control of a set of nodes
via the control network from the experiment controller. Com-
pletely reloading the image on the nodes between experiments
avoids leftover configuration from the previous repetition, or
even worse, different experiments. Depending on the number
of nodes, deploying the OS image can be challenging. One
critical factor in this context is the time to get the OS up
and running (booted and accessible from the control network).
The options for deploying the image on a node depend on the
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particular hardware and capabilities of the used bootloader. An
interesting feature is the ability to debug the boot process in
case of errors in the image preparation or due to modifications
of the kernel.

C. Software and Configuration Deployment

The goals of the last preparation step before performing
experiments are to install the remaining software and assign
the proper per-node configuration. This includes software that
is being developed and tested as part of the experiment or
software that is often changing. Deploying different config-
urations allows assigning roles to the respective nodes. The
challenge is to execute this step efficiently on multiple nodes,
while allowing dynamic customizations on a per-node basis,
using a common description or template. It is also important to
be able to automatically verify the configuration of the nodes.

D. Execution of Experiments

Each experiment run is characterized by the corresponding
test scenario. It consists of setting of configuration param-
eters, running various applications, and doing corresponding
measurements. Execution of the experiment can be seen as a
logically consistent, properly ordered execution of individual
actions on the whole set of nodes, including the collection
of relevant data. This is by far the most complex part of the
experimentation workflow and the concrete actions depend on
the particular experiment setting and scenario.

The main issue tackled in this step is control of actions on a
set of nodes. An action can be changing hardware parameters,
for example, transmit power, starting or stopping processes,
changing software configuration or triggering software or
hardware via an application programming interface (API). The
tools should be able to react upon predefined triggers, for
example after a Wi-Fi connection has been established, and
execute actions, like triggering a packet generator. The proper
tool can help to abstract varying equipment and their control
APIs by wrapping them so that the experimenter can use them
in a unified way. Error-handling is also crucial in order to
inform the experimenter of a potential misconfiguration or
un-expected events early on. It needs to be possible to easily
execute the same experiment multiple times, with the same or
different parameters.

Finally, data needs to be retrieved from the nodes to the
experiment controller machine for further processing. This step
is subject to ordering issues, e.g. RX event reported before
the corresponding TX event. Both, existing experimentation
platforms and DevOps tools rely on tight node synchronization
using solutions like Network Time Protocol (NTP) or Precision
Time Protocol (PTP), which should be selected based on
requirements of the experiment.

E. Data Analysis

The last step is the analysis of the data gathered from
multiple experiment runs. This can be done on the experiment
controller machine. It starts with loading and preparation
of measurement data. Next, the required analysis has to be

performed. It usually ends with generation of graphs and
diagrams, which provide insight into the obtained data.

Analysis can range from simple statistical modeling to
advanced machine learning approaches, depending on the
particular experiment. An advanced feature, optionally pro-
vided by the data analysis tools, is to dynamically control the
experiment execution flow based on results.

IV. TOOLCHAIN FOR EXPERIMENTATION

In this section, we discuss tools supporting each step of
the workflow. A key observation is that many of the tasks,
marked in bold in the previous section, are not specific to ex-
perimentation, but are supported by widely used IT-automation
tools. Therefore, instead of only considering dedicated tools
for experimentation, we include state-of-the-art tools from
closely related fields. We find that these tools have much wider
support, with bugs being fixed and features being continuously
added. Additionally, learning a tool that is heavily used in the
IT industry is likely to pay out more than investing time for
a tool, that could be specific to a single testbed.

The summary of the considered tools and the supported
workflow stages is presented in Tab. I. We analyze each
mentioned tool with respect to the following functional re-
quirements (when applicable2):
• Modularity: Parts of the code or configuration created with

the tool can easily be modified or re-used in a different
context;

• Scalability: Easily works with a high number of nodes;
• Support: Is under active development and has a big com-

munity of users;
• Ease of installation: Can be installed and used effortlessly;
• No additional infrastructure: Requires no additional infras-

tructure, like a server or agents installed on each node;
• Wide applicability: Can be used in a broad scope of use-

cases;
• Usable in ad-hoc setups: Is usable in local and ad-hoc

experimental setups;
• Usable in testbeds: Is usable in a testbed environment;
• Language: The programming language used by the user of

the tool.
We have selected the set of tools (marked in the table)

fulfilling the following criteria:
1) The set exhaustively supports all steps of the workflow;
2) The individual tools are feature-rich;
3) The tools use the same language.

The last criterion reduces the cognitive burden of learning
and using different programming languages and concepts for
the experimenter. In this case, we have selected Python, as it
is an open source programming language, is used to develop
many of the automation tools and is available by default in
most of the Linux distributions.

For the following step by step description, we assume that
the experimenter has installed the marked tools from Tab. I on

2Marks in brackets denote partial support.
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e Bootstrapping of Hardware X X
OS Image Preparation X X X (X)
OS Image Deployment X X X (X) (X)

Software and App. Deployment X X X X X X
Execution of Experiments (X) X X X X

Data Analysis (X) X (X) X X

Fe
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Modularity X X X X X X X X X X
Scalability n/a n/a n/a X X X X X X X X n/a n/a n/a

Support X X X X X X X X X X (X) X X X X
Ease of installation X X X (X) X X X X

No Additional infrastructure X n/a n/a n/a X X X X n/a n/a
Wide applicability (X) X X X X X X X X X X X

Usable in ad-hoc setups X X X X X X X (X) X n/a n/a n/a
Usable in testbeds n/a n/a X X X X X (X) (X) X X n/a n/a n/a

User interface or language n/a n/a Python Shell Shell Yaml
Python GUI Shell DSL Python Ruby DSL Ruby Python Python GUI Matlab R

the experiment controller machine3. We recommend using the
latest available version of each tool. Python package managers,
like pipenv, allow reproducing the setup, by keeping track of
used versions of all packages. Another general guideline for
improving repeatability is to treat storage at the experiment
nodes as ephemeral. This ensures that the whole experiment
can always be executed from the controller machine.

A. Bootstrapping of Experimental Hardware

To avoid dependency on a hardware specific bootloader,
we utilize the kexec [11] Linux kernel feature. It is used to
dynamically boot into the new OS, i.e. without having to go
through a bootloader. Hence, this method is applicable to a
wide range of hardware.

First, Ubuntu or any other Linux distribution has to be
installed on each node manually. This installation will only
be used as a basis to load OS images for experimentation. The
kexec method does not require any specific hardware support.
In Ubuntu, Python support is available by default, ssh access
can be enabled during installation and kexec can be added by
installing the kexec-tools package. To be able to remotely
access the node via ssh from the controller machine, it is
also necessary to set up IP-based networking. Under normal
circumstances (no major faults), the nodes can be rebooted or
powered off using standard Linux commands.

B. Operating System Image Preparation

The OS images can be prepared on the experiment controller
machine. diskimage-builder [12] allows preparing ready-to-use
OS disk images of various Linux distributions.

The experimenter can extend a default configuration or
develop own elements in order to meet his or her requirements.
This approach is relatively easy to use, yet allows for a good
level of customization, which is explicit (configuration files)
and can easily be reused, modified and shared. In addition to

3With the exception of kexec, which needs to be installed only on experi-
mental nodes.

the experiment-specific packages, the created OS image has to
include Python, as it is required by other tools like Ansible.

The following example illustrates how to create an Ubuntu
18.04 (bionic) OS image with openSSH-server installed and
enabled by default.

DIB_RELEASE=bionic disk-image-create ubuntu
openssh-server -t tgz -o image.tgz↪→

C. Operating System Image Deployment

Next, the experimenter needs a way to deploy and boot the
OS image on a specified set of nodes. The first step is to copy
the experiment-specific image to a separate partition on each
corresponding target node (running the basis OS as bootloader
replacement).

Booting a kernel with kexec consists of loading the target
kernel into memory and then executing it, as shown in the
example below. Kexec allows to pass it the kernel command
line parameter, specifying the device (partition), on which the
experiment-specific OS image resides.

kexec -l /mnt/boot/vmlinuz-4.11.3-041103-generic
--initrd
/mnt/boot/initrd.img-4.11.3-041103-generic
--command-line "root=/dev/vg_images/default ro
netconsole=6666@10.1.1.101/eth0,5555@10.1.1.5/"

↪→

↪→

↪→

↪→

kexec -e

The optional netconsole feature allows for remote anal-
ysis of the boot process.

Ansible [13] allows to specify the above tasks, like executing
kexec commands, in a configuration file, called playbook,
once and to execute them on all nodes in parallel using one
command. The feature of remote power state control of the
nodes is not explicitly supported. However, with proper use of
the remote shell (ssh) and Ansible, reboots can be triggered
remotely under normal operating conditions. Manual reboot
remains necessary only in case of node misconfiguration or
severe faults in the software or control network.
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D. Software and Configuration Deployment
Usage of IT automation tools allows to precisely express

the configuration and target state of a node in a standardized
language, such that it can be shared and repeated effortlessly.
The following example shows an Ansible playbook, that makes
sure iperf3 in version 3.0.11 is installed on all nodes. The
whole playbook defines and documents for replicability how
the nodes should be configured.

- name: Software Deployment Playbook
hosts: all
become: yes
tasks:
- name: Install iperf3

apt:
name: iperf3=3.0.11*

E. Execution of Experiments
In Linux, actions are typically triggered by executing shell

commands. Fabric [14] provides a suite of operations for
executing local or remote shell commands, uploading or
downloading files, as well as auxiliary functionality such as
prompting the running user for input. The example shows
how to implement a throughput measurement between two
nodes together with the collection of measurement results to
the experiment controller machine. Including all experiment
parameters, like measurement duration, in Fabric scripts doc-
uments precisely how the experiment has been conducted.

from fabric import Connection
server, client = "giga1", "giga2"
server_c = Connection(server)
client_c = Connection(client)
duration = 20 # seconds

server_c.run("iperf3 -s -D --json")
client_c.run(f"iperf3 -c {server} -t {duration}

--json --get-server-output >
/tmp/{client}.json")

↪→

↪→

client_c.get(f"/tmp/{client}.json",
f"./{client}.json")↪→

Experiment control with Fabric is based on triggers reg-
istered by the Fabric script on the controller machine, for
example when an application running on a node finishes or
a wireless link is operational. This allows controlling the
beginning of the next control action after the completion of
the previous one. This level of controlling the experiment
execution is frequently sufficient. There are experiments which
might benefit from explicit temporal control of events, like
the simultaneous execution of actions. Fabric provides only
limited support for such operation.

F. Data Analysis
The final step after performing experiments is the analysis

of results. The Python ecosystem provides a powerful selection
of data analysis tools. For example, the proposed jupyter note-
books allow to create documents consisting of code together
with figures and textual explanation. An in-depth discussion
of the various tools can be found in [15].

V. USING THE WORKFLOW WITH TESTBEDS

Testbeds (like ORBIT [16], w-iLab.t [1]) offer large-scale
experimentation facilities. Testbed providers take care of the
experimentation nodes and their environment and provide a
fast, reliable control channel. They allow to reserve and access
nodes for experimentation over the Internet. After reservation,
the experimenter can use the testbed API to select and boot the
OS image for each node and gains full root access.

This frees the experimenter from the first tasks of the
workflow, i.e. bootstrapping, OS image preparation and OS
deployment. These steps are under the control of the testbed
provider with functionalities exposed through a testbed specific
API. The Slice-Based Federation Architecture (SFA) [17] is
currently the de-facto standard for such API. jfed [18] and
omni [19] allow to reserve testbed nodes and can be used as a
drop-in replacement of the tools suggested for OS deployment.

Many testbeds provide pre-configured disk images for the
nodes. Those images are equipped with default software and
work out of the box on the respective testbed. The exper-
imenter, having full permissions, can extend the image by
installing software, i.e. software deployment step. However,
the build process of these images is often nontransparent and
images can be modified (e.g. updated) without notice. The
SFA API allows to provide own OS images, like those prepared
in the OS image preparation step. Depending on the particular
testbed infrastructure, it might be required to modify an image
in order to successfully boot it on the respective testbed.

All steps of the workflow following the deployment of
the customized OS, are supported by the tools described in
Section IV. In summary, the discussed workflow and suggested
toolchain can be used together with the testbed APIs, benefiting
from the additional support by the testbed.

VI. RELATED WORK

There are several dedicated experimentation tools support-
ing the experimentation process, summarized in a survey by
Buchert et al. [20]. All of those tools closely follow the general
experiment architecture but only loosely follow the workflow
and do not explicitly name it. A detailed mapping of the
tools to their supported workflow steps is provided in Fig. 3.
The tools focus on experiment execution with an emphasize
of monitoring and data management functionalities, but also
provide support for software deployment and configuration
management. At the time when most special purpose tools
have been developed, the DevOps approach and tools have not
yet been mature enough. We found that recent IT automation
tools are supported by a much bigger community and cover all
relevant features of the dedicated experimentation tools. Out
of the tools analyzed in [20], only OMF [21] and nepi-ng [22]
are used in the Fed4FIRE(+) testbed federation. They have thus
been included in our analysis as well.

Closely related to our discussion of parallels between ex-
perimentation and DevOps practices, Vucnik et al. [2] adopt
the continuous integration/continuous delivery (CI/CD) method-
ology for wireless network experimentation. Extending the
LOG-a-TEC testbed, they demonstrate the effectiveness of
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Fig. 3. Dedicated tool overlap with the workflow

such approach in the context of multi-technology 5G machine-
type communications. Jimenez et al. [23] used existing tools
to create a continuous integration (CI) service that automates
the end-to-end execution of experiments but it lacks supporting
community. Duplyakin et al. [24] propose a set of ”cookbooks”
for the Chef configuration management system that can help
with creating new experiment setups using existing testbeds.

VII. FINAL COMMENTS

Usage of the described workflow and tools should improve
the structure of the experimentation process by allowing to
clearly split concerns and by explicitly solving each sub-
problem with playbooks and scripts. The resulting implemen-
tation of the whole experiment in code aids the application
of good experimentation practices and benefits repeatability.
Usage of the right DevOps tools further helps by making the
experiment code more concise and clear.

The more details about each step of the experiment are
provided, the easier it becomes to repeat it. Authors of
scientific works should thus provide not only collected data
but also the experiment source code.

The workflow and toolbox can be used with ad-hoc exper-
imentation networks, is equally applicable to public testbeds
and is relevant in the context of experiments running on a
commercial cloud. This is particularly useful for doing local
experiments and then using the same code at a big scale testbed
or cloud for a more in-depth measurement campaign.

We leveraged a set of DevOps related projects and open
source tools, that have good documentation, are widely used
and broadly applicable. They can be, in some cases, replaced
by alternatives. We presented an example experiment and we
encourage to repeat our experiments and analysis.
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