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Abstract—The high power consumption of inertial activity sen-
sors limits the battery lifetime of today’s wearable devices. Recent
studies promise to extend the lifetime of wearable devices by
translating kinetic energy from human movements into electrical
energy while using the harvesting signal to replace conventional
activity sensors. However, in human-centric applications, the
amount of harvested kinetic energy is not enough to power a real-
time activity recognition algorithm and run the wearable device
perpetually. In this paper, we propose Solar based human Activity
Recognition (SolAR), which uses solar cells simultaneously as an
activity sensor as well as an energy source. Our key observation
is that the power available from a wrist-worn solar cell changes
dynamically while a person moves, encoding information about
the underlying activity. We collect empirical solar energy data to
explore its activity sensing potential and implement the activity
recognition pipeline on an ultra low-power micro-controller unit
to evaluate the end-to-end power consumption of the system.
Our analysis reveals that SolAR improves activity recognition
accuracy by up to 8.3% and harvests more than one order of
magnitude higher power compared to its kinetic counterpart.
This enables SolAR to generate more energy than required
for the entire activity recognition pipeline, which we term
as energy positive activity recognition, achieving uninterrupted,
autonomous, self-powered and real-time operation.

Index Terms—Wearables, Solar, Kinetic, Energy Harvesting,
Sensors, Human Activity Recognition, Energy Positive Sensing

I. INTRODUCTION

With the advancement in technology, wearable Internet of
Things (IoT) devices are becoming increasingly popular with
an expected market size of US$ 51.62 billion by the year
2022 [1]. They have numerous applications in our daily lives
including Human Activity Recognition (HAR), health and
fitness monitoring [2], and transport route planning [3]. How-
ever, current wearable devices have limited lifetime due to the
finite energy storage capacity of their batteries which impedes
their pervasive deployment. A promising solution is to employ
energy harvesters to convert ambient energy into electrical
energy to power these wearable devices. Because the amount
of harvested energy encodes information about the underlying
physical processes, energy harvesters can be used as activity
sensors to replace conventional power consuming sensors such
as accelerometers and magnetometers [2]. For example, the
harvesting signal from a wearable Kinetic Energy Harvesting

Fig. 1: Using solar cell for activity recognition as well as to
power the sensor node, leading towards energy positive HAR

(KEH) transducer changes according to the underlying human
movements/vibrations and thus contains information about the
activity [3], [4]. In addition to KEH transducers, solar cells are
also used as a proxy for activity sensors [5], [6]. Ma et al. [5]
employ solar cells for recognizing different types of hand
gestures in a controlled environment under a lamp. Umetsu
et al. [6] employ both solar and kinetic energy harvesters
for room-level place recognition in a building. However, most
previous works [4]–[6] operate KEH transducer and solar cells
in an open circuit configuration, i.e. only as a sensor without
extracting energy simultaneously.

To address this issue, researchers [7], [8] employ KEH
for simultaneous sensing and energy harvesting, showing
that it can support energy positive signal acquisition, where
the harvested energy exceeds the energy required for signal
acquisition [7]. This enables applications where sensor data is
logged on the device locally, and then manually transferred
post deployment for offline processing and activity classifica-
tion. However, real-time HAR with energy harvesting-based
sensors, where users receive live feedback on their activities,
requires that the harvested energy can power not only signal
acquisition, but also classification, and transmission. Unfortu-
nately, the harvested energy from a tiny, single, untuned KEH
is not enough to power all components of a HAR system [7],
[9]. Our objective in this paper is to enable energy positive



HAR, where the harvested energy exceeds the energy required
for signal acquisition, classification, and activity transmission.

To this end, we propose Solar based human Activity
Recognition (SolAR) which uses solar cells as a sensor for
activity recognition as well as a source of energy. As the
human activities interfere with the ambient light differently, the
output signal from the wearable solar cell embeds a signature
of the underlying activity. In addition, the harvested power
from the solar cell can be sufficient to run the end-to-end
HAR algorithm (including signal acquisition, classification
and real-time wireless activity transmission) and thus enables
energy positive HAR as depicted in Fig. 1. In order to evaluate
SolAR, we collect Solar Energy Harvesting (SEH) data from
21 adult and healthy participants performing five common
activities both indoors and outdoors. Using well-known ma-
chine learning algorithms, we discover that, compared to
conventional KEH-based HAR systems [4], [10], the proposed
SolAR system delivers an order of magnitude higher harvested
power indoors, and up to 8.3 % higher HAR accuracy. In
outdoor settings, SolAR offers comparable HAR accuracy and
more than two orders of magnitude higher harvested power
compared to KEH-based HAR. The significant increase in the
harvested power enables real-time and energy positive HAR.

This paper makes the following main contributions:
• We propose SolAR, an energy-positive HAR mechanism

which employs a wearable-sized solar cell to provide both
activity information as well as energy simultaneously.

• We collect solar data from 21 participants in indoor as
well as outdoor environments and implement a classi-
fication algorithm to infer the underlying activity. Our
rigorous analysis reveals that SolAR provides up to 8.3 %
higher HAR accuracy compared to KEH-based HAR.

• In order to measure the end-to-end power consumption,
we implement the proposed classification pipeline on
an ultra low-power Micro-controller Unit (MCU). We
discover that SolAR offers energy positive HAR as the
harvested power is higher than the power required to
run the HAR algorithm on the wearable device, ensuring
its autonomous, self-powered, real-time and perpetual
operation without the need for any external energy source.

II. RELATED WORK AND MOTIVATION

A. Previous HAR mechanisms

Previous HAR techniques rely mainly on conventional ac-
tivity sensors [11] such as accelerometers and magnetometers
which consume significant energy and require an external
energy source for their perpetual operation [2]. In order
to allow uninterrupted operation and to reduce the energy
consumption of IoT sensor nodes, recently, KEH transducers
are also being used as activity sensors for HAR. Khalifa et
al. [4] show that KEH-based sensing can offer reasonable
HAR accuracy with significantly reduced energy consumption
compared to conventional activity sensors. Kalantarian et
al. [12] design a KEH-based necklace for monitoring food
intake and eating habits. Lan et al. [13] use a capacitor to store

TABLE I: Properties of SEH and KEH [14], [15]

Property Photovoltaic Piezoelectric

Power density [µW/cm2] 10 µW to 15mW upto 330 µW

Conversion efficiency up to 40% up to 30%

Robustness High Low

the harvested energy from KEH and then use the capacitor
voltage signal for HAR. This reduces the energy consumption
due to the reduced sampling rate for acquiring the slowly
varying capacitor voltage. Instead of using a single KEH
transducer, Ma el al. [8] employ two transducers in a shoe
to identify the underlying human activities. They use both
transducers for HAR as well as for extracting energy (stored
in the capacitors), but do not consider the effect of a realistic,
dynamic load. Sandhu et al. [7], instead, use a KEH transducer
as an activity sensor and source of energy simultaneously to
power a dynamic load. They show that KEH offers energy
positive signal acquisition, which means that the harvested
energy is higher than the energy required for acquiring the
activity signal. However, in human-centric applications, the
limited harvested energy from a KEH transducer may not be
sufficient to run all tasks on the sensor node, including signal
acquisition, classification and transmission without the need
for any external energy source [7]. This limits its application
to scenarios with offline, cloud-based classification. Therefore,
there is still a significant need for alternative HAR mechanisms
that can ensure the autonomous and perpetual operation of
sensor nodes for running the HAR algorithm leading towards
a truly pervasive energy harvesting-based IoT.

Previous studies illustrate that ambient light also contains
information about the human context and, for example, can
be used to analyse human eating habits [16] when combined
with other sensory data. The authors in [17] deploy light
sensors on the floor and use the output signals to detect
human gestures. Zhang et al. [18] develop a photodiode array
and use it in various applications including detection of door
opening/closing, liquid level detection, step count and touch
detection, etc. Instead of using conventional light sensors,
the authors of [5] employ solar cells to recognise various
hand gestures under a fixed lamp. Furthermore, Li et al. [19]
use arrays of photodiodes for finger gesture recognition and
employ the harvested energy to power the gesture recognition
module. However, they perform gestures by touching the
arrays of photodiodes and thus their system may not recognise
finger gestures performed in the vicinity of (without touching)
the photodiode array. In another study [6], a combination of
solar and kinetic energy harvesters (placed on the human chest)
is used for room-level place recognition in buildings. These
works employ SEH either in a controlled environment [5]
(indoor only) or in a combination with KEH transducers [6].
Furthermore, they (except [19]) employ SEH merely as an
activity sensor without harvesting energy to power a dynamic
load. Moreover, to the best of our knowledge, the potential of
using solar cells to detect human physical activities (indoors
and outdoors) in HAR applications remains unexplored.
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Fig. 2: Solar harvested power during various human activities

B. Motivation

Solar (or photovoltaic) cells are the most common and
economical source of energy used to power IoT sensor
nodes [20]. A solar cell consists of a semiconductor material
and generates an electric current (photocurrent) in response to
the ambient light energy falling on its surface [21]. Due to
the wide availability and ease of implementation in indoor
and outdoor environments, they are used in a variety of
applications including handheld calculators, garden lights [5]
and wearable devices. Table I [15] shows that visible light
offers higher power density compared to kinetic energy. The
table also shows that SEH possesses significant advantages
in terms of conversion efficiency and robustness compared
to its counterpart of motion/kinetic energy. High conversion
efficiency means that a certain harvesting technique can extract
a higher proportion of energy from the source, whereas ro-
bustness means that the system is sufficiently reliable, requires
limited maintenance and offers a consistent response each time
it is exposed to a similar environment.

The harvested energy from a solar cell varies according
to the intensity of incident light and orientation of the solar
surface relative to the light source [5]. When worn on the
human body, the harvested energy changes during various hu-
man activities thanks to the different type of mobility relative
to the source(s) of light as well as shadowing, which contains
a unique signature of the underlying activity. Fig. 2 plots the
generated power from a wrist-wearable small-sized solar cell
during three common indoor human activities: running, walk-
ing, and standing. As various human activities interfere with
the ambient light differently – resulting in distinct harvesting
patterns, we can use the harvesting signal as a sensing signal
in order to classify the current activity. Thus, solar cells offer
an attractive combination of activity information and harvested
energy for realizing pervasive energy harvesting-based HAR.

III. SOLAR: A NOVEL HUMAN ACTIVITY RECOGNITION
SYSTEM

This section describes the architecture of our proposed
SolAR system whereas the implementation specific details
are provided in Section IV. We employ a wearable solar
cell as an activity sensor for HAR as well as an energy
source to power the system load for the autonomous and
perpetual operation of wearable IoT devices. Fig. 3 depicts the
architecture of the SolAR model, showing both the energy and
data flows. We use a DC-DC boost converter with maximum

Fig. 3: Proposed SolAR model using the solar cell as an
activity sensor as well as an energy source simultaneously

power point tracking to optimize harvested energy [22] and
to decouple the harvesting signal from the energy storage
and load behaviour [7]. The harvested energy is stored in
an energy storage (a capacitor/battery) and is finally used
to power the system. The information about the underlying
activity is only encoded in the harvesting current, because
the DC-DC boost converter regulates the voltage of the solar
cell to a constant, optimized value [7]. We use an MCU
to sample and process this current signal and to infer the
underlying activity as shown in Fig. 3. Firstly, various time
and frequency domain features are extracted from the acquired
SEH signal [4], [7]. Then, extracted features are used as input
to a classifier to detect the underlying activity. Finally, the
result of the inferred activity is transmitted to a receiver (e.g.,
a smartphone) where it is exploited, e.g., by health or fitness
applications. Note that, in contrast to [7] which samples the
KEH signal locally and streams the raw data to a server, SolAR
implements signal acquisition, feature extraction, classification
and activity transmission on the wearable device powered
only by the harvested energy from the wearable solar cell.
Implementing the complete HAR pipeline on the sensor node
not only reduces the power consumption [23], [24], but also
improves application latency and privacy [25], [26]. Omitting
conventional activity sensors, rectification circuits (required
for KEH) and external energy sources, SolAR minimizes the
cost, complexity, form factor, and environmental impact of the
wearable IoT system. This finally realises the vision of energy
positive HAR in which end-to-end HAR is performed in real-
time on the wearable devices using only harvested energy.

IV. MEASUREMENT SETUP, DATA COLLECTION AND
IMPLEMENTATION OF THE PROPOSED MODEL

This section explains the measurement setup, the data col-
lection procedure as well as the data traces and implementation
process of SolAR.



Fig. 4: Experimental setup for data collection using SEH and
KEH transducers during various human activities

A. Measurement setup

We use the tool from [27] to sample the solar current
from an off-the-shelf IXYS SLMD121H10L solar module
during five human activities. The solar cell measures 4.2 cm
× 3.5 cm and weighs 4.5 g, which is suitable for wearable
devices and smart watches [28]. As a baseline, we simultane-
ously record the harvesting current from a 7.1 cm × 2.54 cm
MIDÉ technology S230-J1FR-1808XB two-layered piezoelec-
tric bending transducer. We use a tip mass of 24.62 g±0.5%
to tune the resonance frequency of the KEH transducer to
the low frequency vibrations typically observed in human-
centric applications [4], resulting in a total mass of 30.46 g.
Both energy harvesting signals are sampled with an 18-bit
Analog-to-Digital Converter (ADC) at 100 kHz. Finally, we
also record acceleration data from an InvenSense MPU9250
3-axis accelerometer with a 12-bit ADC at 100 Hz. Before
processing, the energy harvesting signals are down-sampled
to the corresponding target frequency (see Sec. V-D). The
solar cell, the piezoelectric transducer and the accelerometer
are mounted on the wrist of the participants as shown in Fig. 4.
Whereas, the recording devices are placed on the waist of the
participants as depicted in Fig. 4.

B. Data collection

We collect SEH, KEH and accelerometer data from five
common human1 activities, i.e., sitting (while putting hands on
the table), standing, walking, running and going up/downstairs.
In order to be able to explore the performance of SolAR under
different light conditions, we conduct two separate sets of
experiments: the first set of experiments is conducted indoors
in a mostly carpeted room of size 9m × 22.5m with 13
healthy adults (age: 34±9.2 years, mass: 78.4±12.5 kg), and
the second set of experiments is conducted outdoors with 8
healthy adults (age: 32.4±4.4 years, mass: 79.7±8.8 kg). In
order to collect a representative SEH dataset which reflects
diverse lighting intensity conditions that can be observed at
different locations, we conduct the experiments on different
days with different weather conditions (i.e., sunny, cloudy and
partially cloudy) and at different times (i.e., morning, noon
and evening). The participants are asked to perform each of
the five activities for three minutes with a break of one minute
after each activity. The participants are advised to perform the

1Ethical approval has been granted from CSIRO [106/19] for carrying out
this experiment.
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(b) Outdoor environment

Fig. 5: A wrist-wearable solar cell generates distinct pattern of
harvested power during various human activities in (a) indoor
and (b) outdoor environments

activities according to their daily routine and as naturally as
possible. In total, we collect 390 minutes of data from five
human activities and 21 participants.

C. Solar cell as a novel human activity sensor

We present the sample data traces collected from a wrist-
wearable solar cell during various human activities in indoor
as well outdoor environments in Fig. 5(a) and Fig. 5(b)
respectively. The figure depicts that the harvested power from
SEH during various human activities is significantly higher
outdoors compared to indoors thanks to the higher power
density of the sunlight compared to artificial indoor light.
Fig. 5 also shows that the harvested power during sitting is
higher than standing due to the direct incidence of light on
the solar cell, for example, when placing the hands on the
table in a sitting position. In addition, dynamic activities such
as walking, running and up/downstairs cause a dynamically
changing orientation of the wrist-wearable solar cell relative
to the light source, which results in a distinct pattern of
harvested power. During walking, for example, the human
body produces distinct shadowing effect on the moving wrist-
worn solar cell, generating unique pattern of the harvested
power. We also observe that indoor environment has multiple
sources of light which may complement each other whereas
outdoor environment contains only one source of light i.e.,
sun. In addition, outdoors there are more obstacles (such as
trees and buildings) between the single light source and the
solar cell, which result in more shadowing compared to the
indoor environment. Therefore, although the harvested energy
outdoors is higher than indoors, we expect higher activity
detection accuracy indoors due to multiple light sources which
complement each other and reduce shadowing effects.



TABLE II: Selected features from the SEH signal

Signal Features

SEH-indoor Peak-to-peak value, Coefficient-of-variation, Absolute
area, Max. distance between peaks, 1st Quartile, 2nd
Quartile, Frequency domain entropy, Median, Spectral
peak, Min. value, Mean distance between peaks, Range,
Max. value, Root-mean-square value, Absolute mean,
Dominant frequency ratio, Kurtosis.

SEH-outdoor Peak-to-peak value, Coefficient-of-variation, Absolute
area, Max. distance between peaks, 1st Quartile, 2nd
Quartile, Frequency domain entropy, Median, Spectral
peak, Min. value, Mean distance between peaks, Range,
Max. value, Min. peaks, Standard deviation, Median
absolute deviation, Frequency domain energy, Mean,
3rd Quartile, Max. peak, Autocorrelation.

D. Implementation of SolAR

Below, we describe the implementation of SolAR in detail.
1) Pre-processing: The collected energy harvesting data

from SEH contains stop periods (after each activity) which are
removed from the data. Then, we segment the collected energy
harvesting data into equal sized windows of 2 s [29] which
is a typical time required to cover one stride length during
walking [30], [31]. In order to retain the context information
at both edges of windows and to enhance the data points, we
overlap [4] the consecutive windows before feature extraction.
Analysing the effect of varying degree of window overlap
on the HAR accuracy, we observe that activity recognition
accuracy increases with the increase in window overlapping
degree. However, increasing the overlap also increases cost
in terms of complexity and energy consumption, which is
particularly relevant under a limited energy budget. Therefore,
in line with previous works [4], [7], we choose a window
overlap of 50 % as a trade-off between HAR accuracy and
energy consumption.

2) Feature extraction: We extract various time and fre-
quency domain features [4], [7], [11] from the energy har-
vesting data as presented in Table II. In addition to time
and frequency-domain features, we consider various peak-
based features, such as peak-to-peak value, maximum distance
between peaks, mean distance between peaks, maximum peak
value, etc. These peak-based features have proven to be useful
to improve human context detection from KEH signals [4].
In order to discover the minimum set of features that of-
fers highest HAR accuracy, we employ various supervised
and unsupervised feature selection algorithms such as mutual
information [32], principal component analysis [33], univari-
ate [34], and correlation based feature selection [35]. After
extensive analysis, we find that the mutual information based
feature selection scheme achieves the highest HAR accuracy
with the lowest number of features. The resulting, reduced
feature set contains 17 and 21 features for SEH (as shown
in Table II), and 25 and 13 features for KEH, in indoor and
outdoor environments respectively.

3) Activity classification and transmission: Prior to
the implementation of classification algorithms, we em-
ploy Borderline-Synthetic Minority Oversampling Technique
(SMOTE) [36] to handle imbalanced data from various hu-

RF KNN SVM DT NB NC GB
40

50

60

70

80

90

100

Av
er

ag
e 

ac
cu

ra
cy

 [%
]

ACC SEH KEH
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Fig. 6: HAR accuracy of 3-axis accelerometer (ACC), SEH
and KEH signals in (a) indoor and (b) outdoor environments
using various classification algorithms (window size = 2 s)

man activities. Then, we apply seven well-known supervised
machine learning classification algorithms including Random
Forest (RF), K-Nearest Neighbor (KNN), Support Vector Ma-
chine (SVM), Decision Tree (DT), Naive Bayes (NB), Nearest
Centroid (NC) and Gradient Boosting (GB) on the energy
harvesting datasets. The classification algorithms are trained
offline and the trained model is then imported on the embedded
device for activity recognition from the real-time SEH signals.
After implementing the classification algorithm, the inferred
activity is transmitted using the Bluetooth Low Energy (BLE)
wireless communication protocol. Thus, the proposed work
not only acquires the activity signals [7] but also implements
the classification algorithm on the node using the harvested
energy without the need of any external energy source.

In order to enable comparability of our results to the state-
of-the-art [3], [5], all the results in this paper are obtained
using 10-fold Cross Validation (CV) (except Section V-E
which presents results using leave-one-user-out CV to analyse
the robustness of our system with user variance), and are
presented with 95% confidence level. In order to ensure robust
performance of the classifier, the folds are selected randomly
from the available data. Prior to invoking the classification
algorithms, we augment the data from various human activities
and normalise the features with zero mean and standard
deviation of one. Unless stated otherwise, the results are
obtained using activity signals sampled at 100 Hz.

V. PERFORMANCE EVALUATION

SolAR relies on ambient light to generate energy and uses
the solar harvesting current signal for HAR. Since the ambient
light differs significantly between indoor and outdoor environ-
ments, we initially evaluate the performance of SolAR using



(a) SEH signal

(b) KEH signal

Fig. 7: Confusion matrices for HAR using (a) SEH and (b)
KEH signals in indoors and outdoors (window size = 2 s)

SEH data from indoor and outdoor experiments separately,
with an extensive comparison to accelerometer and KEH-
based HAR. We present classification results of well-known
classifiers, analyse variability of human activities as well as
the effect of varying window sizes and sampling frequency
on the activity recognition accuracy. Then, we examine the
robustness of SolAR against new/unseen users. Finally, we
evaluate the performance of SolAR using the combined data
from both indoor and outdoor experiments.

A. Classification accuracy

Fig. 6 depicts the HAR accuracy offered by SEH, KEH
and 3-axis accelerometer signals using various classification
algorithms in indoor (Fig. 6(a)) and outdoor (Fig. 6(b)) envi-
ronments. We find that, among all the classification algorithms,
the RF classifier offers highest HAR accuracy for all types
of signals. Therefore, in the rest of the paper, all results are
obtained using the RF classification algorithm. Furthermore,
among the activity signals, the accelerometer signal offers
highest HAR accuracy due to the rich context information
embedded in its 3-axis signal. Fig. 6 shows that among
the two energy harvesting signals, SEH indoor and outdoor
offers higher HAR accuracy than KEH thanks to the higher
signal amplitude and unique harvested energy pattern during
various human activities. In addition, SEH indoor offers higher
HAR accuracy than SEH outdoor due to the uniform light
availability, less shadowing and more light sources which
complement each other. In other words, the diversity of light
sources indoors edges its performance closer to the 3-axis
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Fig. 8: HAR accuracy using SEH and KEH signals with
increasing window sizes in indoor and outdoor environments

accelerometer, which captures three orthogonal signals for
activity classification. Thus, SEH-based HAR outperforms
conventional KEH-based HAR systems [4], [13] in terms of
activity recognition accuracy.

B. Variability analysis of human activities

In order to analyse the classification results for individual
human activities and to explore their variability, we show the
confusion matrices using SEH and KEH signals (using the
RF algorithm) in indoor as well as outdoor environments in
Fig. 7. The figure shows that SEH offers higher recognition
accuracy for static activities i.e., standing and sitting. The
incident angle of the ambient light changes with the orientation
of the solar cell, generating a significantly different amount
and pattern of energy during static positions, which can be
used to identify the underlying human activities. KEH, instead,
generates a negligible amount of energy during static positions,
which may not have significantly different patterns and thus
offers lower HAR accuracy. Furthermore, SEH provides higher
recognition accuracy during up/downstairs activity due to a
different distribution of light compared to other activities.
In contrast, using KEH, up/downstairs activity is confused
with walking due to similar arm movement which generates
an identical signal from the KEH transducer. Finally, KEH
provides higher recognition accuracy for dynamic activities
including walking and running, due to the motion-specific
harvesting signal and significantly different type of mobility
compared to other activities. On the other hand, due to the
similar distribution of light sources, the harvesting signal
pattern from SEH may have a certain degree of similarity
during dynamic activities and thus offers lower HAR accuracy
compared to the KEH signal.

C. Varying window sizes

Next, we explore the impact of larger window sizes on
the activity recognition accuracy. Fig. 8 shows the activity
recognition accuracy using various window sizes from 2 s to
12 s for SEH and KEH signals (using RF algorithm) in indoor
as well as outdoor environments. We find that indoor SEH
offers relatively stable HAR accuracy with a slight increase of
about 2.8% when increasing the window size from 2 s to 12 s.
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Fig. 9: Average HAR accuracy and required power with
varying sampling frequencies of SEH and KEH signals in
indoor and outdoor environments (window size = 8 s)

The outdoor SEH signal instead is less sensitive to the increase
in window size and offers constant HAR accuracy from 2 s to
9 s and for 12 s. The HAR accuracy of KEH signals (indoors
and outdoors), on the other hand, increases by about 6% with
an increase of the window size from 2 s to 12 s.

However, increasing the window size also results in in-
creased latency, computational complexity and memory re-
quirements. Therefore, the window size should be selected
keeping in mind the required HAR accuracy, responsiveness
of the system as well as the processing complexity due to
the miniaturized and resource constrained target (wearable)
device. Based on the previous discussion, we observe in Fig. 8
that 8 s is the minimum size of the window that offers best
results in terms of HAR accuracy for all types of signals.
Therefore, the remainder of the results in this paper are
presented using a window size of 8 s.

D. Varying signal sampling frequency

Fig. 9 shows the HAR performance over varying sampling
frequencies ranging from 10 Hz to 100 Hz (using RF algo-
rithm). The figure shows that the SEH signal indoors offers
stable HAR accuracy which does not exhibit a perceptible
change when sampling rate is increased from 10 Hz to 100 Hz.
In contrast, the SEH signal outdoors offers a small increase of
about 3.7% in HAR accuracy with the increase in sampling
rate from 10 Hz to 100 Hz. The HAR accuracy of indoor KEH
signal increases by about 3.8% at a sampling frequency of
100 Hz compared to 10 Hz. The KEH signal outdoors is not

TABLE III: Average HAR accuracy from the robustness
experiment

Type of signal 10-fold CV Leave-one-user-out CV

SEH-indoor 93.47 84.62

SEH-outdoor 86.87 61.69

KEH-indoor 88.89 83.25

KEH-outdoor 86.14 66.43

Accelerometer 99.3 92.27
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Fig. 10: HAR accuracy using separate as well as combined
data from indoor and outdoor environments (window size=8 s)

sensitive to the increase in sampling frequency and provides
relatively stable HAR accuracy at all sampling frequencies.

The improvement in HAR accuracy at higher sampling rates
stems from the higher resolution of the signal and its ability
to capture more fine grained details of the activity pattern.
However, as depicted in Fig. 9, the energy consumption
increases with the increase in sampling frequency due to the
acquisition of more samples in a fixed time interval. Therefore,
depending on the type of application and the amount of
harvested energy, the SEH sampling rate can be chosen as
low as 10 Hz to minimize the energy consumption, while still
offering activity recognition accuracy of above 93% and 83%
in indoor and outdoor environments, respectively.

E. Robustness to user variance

In this subsection, we analyse the robustness of SolAR sys-
tem against new/unseen users. To this end, we perform leave-
one-user-out CV on the collected data (using RF algorithm)
and present the averaged results in Table III. The table shows
that SEH indoor, accelerometer and KEH indoor signals are
least sensitive to the variation in the user and offer 5-9% de-
creased HAR accuracy for new and unseen users. On the other
hand, SEH and KEH signals outdoors are significantly affected
by the user variance and offer decreased HAR accuracy by
19-25% for new users due to the significant variation in the
activity pattern. However, the SEH transducer still offers more
than 84% HAR accuracy in indoor environments for new and
unseen users, which shows its applicability in practical and
real-world scenarios. We expect that a larger training sample
will further reduce this sensitivity.

F. Environment-agnostic analysis

Instead of training the classification model separately in
indoor and outdoor environments, we combine the energy
harvesting data from both environments in an environment-
agnostic scenario. We train the classification algorithm using
all features listed in Table II and plot the classification results
(using RF algorithm) from individual as well as combined
datasets in Fig. 10. The figure shows that SolAR can recognise
human activities in an environment-agnostic scenario with
a 7% higher accuracy than conventional KEH-based HAR.
Furthermore, the performance of SolAR in the environment-
agnostic scenario is higher than that of the outdoor envi-
ronment, and it is close to the performance in the indoor
environment. This demonstrates the general applicability of
our proposed approach in different environments.



TABLE IV: Average harvested power during various activities

Human activity
Harvested Power [µW]

Outdoor Indoor
Kinetic Solar Kinetic Solar

Running 11.7 3800 6.5 29.7

Walking 3.16 2800 2.4 29.6

Using stairs 3.57 2100 2.8 13

Standing 0.49 840 0.45 26

Sitting 0.47 1900 0.21 54.7

Average power 3.88 2288 2.47 30

Power density [µW/cm2] 0.218 163.429 0.139 2.143

VI. ENERGY POSITIVE HAR

In this section, we analyse the harvested power from SEH
and KEH transducers during various human activities as well
as the required power for running SolAR on a wearable device.

A. SolAR harvested power

We calculate the average harvested power from the collected
SEH and KEH data during various human activities and
present the results in Table IV. The last row of Table IV
describes the power density, i.e., the harvested power per
area. We find that, on average, SEH generates more than one
order of magnitude higher power indoors, and more than two
orders of magnitude higher power outdoors compared to KEH
due to the higher power density of visible light as well as
higher conversion efficiency of solar cells [15]. The results
also show that harvested power from SEH is less dependant on
the physical human movements as compared to KEH; there is
a minimum power level that can be harvested from SEH even
during static activities such as standing and sitting. KEH, on
the other hand, harvests only a small amount of power (i.e.,
0.21 µW-0.49 µW) during these static activities due to lower
movements of the human body. The harvested power outdoors
is higher than indoors for both SEH and KEH. For SEH,
this is because natural sunlight has a higher power density
compared to the artificial indoor lights. For KEH, we suspect
a combination of two effects: (1) walking on a paved surface
generates a higher degree of vibrations than walking on a
carpeted floor indoors [37] and, (2) people tend to move faster

Fig. 11: Experimental setup for measuring the power consump-
tion in implementing the HAR model

TABLE V: Average required power to implement the end-to-
end HAR algorithm on the sensor node using SEH signal in
an indoor environment (window size = 8 s)

Task Power [mW] Time [µs] Avg. power [µW]

Sampling 8.6 2752 1.59
(@10Hz)

Feature extraction 6.6 1985 1.64

Classification 6.6 74 0.06

Data transmission 11.2 491 0.12

Sleep mode 0.0045 7.995× 106 4.5

Total 33.004 8 × 106 7.92

outdoors which results in higher vibrations and, as a result,
higher KEH power.

B. SolAR power consumption

We implement the SEH- and KEH-based HAR models on
an ultra low power Nordic Semiconductor nRF52840 wireless
MCU (shown in Fig. 11) to measure and compare the power
consumption of the individual tasks, i.e., sampling, feature
extraction, classification and transmission. Based on the results
from Section V, we choose a window size of 8 s, a sampling
frequency of 10 Hz and the RF classification algorithm. The
result of the classification is transmitted as a BLE packet (after
every 8 s), consisting of 6 bytes header, 3 bytes checksum and
1 byte payload, encoding the result of the classification. To
measure the current, we place a 10 Ω shunt resistor in series
with the 2 V supply voltage and measure the voltage drop with
an Agilent Technologies MSO4104B oscilloscope as depicted
in Fig. 11. The firmware is configured to set a dedicated Gen-
eral Purpose Input/Output (GPIO) pin high while executing
a task. By simultaneously recording the current and GPIO
pins, we can precisely measure the execution time and power
consumption of each task.

Table V shows the average, per-task power requirements of
running SolAR with the indoor feature set. Sampling takes
1.594 µW, including 0.294 µW for the ADC and 1.3 µW for
converting the ADC data into floating point values. Feature
extraction and classification take 1.637 µW and 0.061 µW,
respectively. Transmitting the result over the wireless channel
takes 0.125 µW, including 0.067 µW to power up the high
frequency clock and 0.058 µW for transmitting the packet.
For 99.93 % of the time, the MCU remains in deep sleep
mode consuming only 4.5 µW. Thus, the total average power

TABLE VI: Required power to implement the embedded
machine learning HAR (window size = 8 s)

Signal No. of Required Power [µW]
features Feature ext. Classification Total

SEH-indoor 17 1.637 0.061 1.698

SEH-outdoor 21 2.236 0.073 2.309

KEH-indoor 25 2.557 0.078 2.635

KEH-outdoor 13 1.567 0.072 1.639
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Fig. 12: Average harvested and consumed power in imple-
menting end-to-end HAR model using SEH and KEH signals
indoors and outdoors

consumption of our implementation is 7.92 µW. Table VI
compares the power requirements of SEH- and KEH-based
HAR with the indoor and outdoor feature sets, respectively.
We find that, because SEH- and KEH-based HAR have
different features, they have a different power consumption.
Interestingly, the average power for the classifier (0.061 µW
to 0.078 µW) is more than one order of magnitude lower than
the power required in feature extraction across the board.

C. Energy positive HAR

In this subsection, we examine if SolAR achieves energy
positive HAR by comparing the harvested power to the re-
quired power to run SolAR on the wearable device. To this
end, we define the HAR power ratio (P r

har), similar to the
signal acquisition power ratio in [7]:

P r
har =

Harvested power

HAR power
(1)

When the harvested power from a wearable-sized transducer
is less than the power required for running the HAR model
(P r

har < 1), the system is energy negative. On the other hand,
if the harvested power is greater than the power required for
running the HAR model (P r

har > 1), the system is energy
positive. Fig. 12 compares the harvested power from SEH
and KEH with the corresponding power to run the HAR
model averaged over all activities. The average SEH power
is higher than the power required to run the HAR model
on the sensor node both indoors and outdoors. Thus, SolAR
is energy positive and enables autonomous and perpetual
operation of the sensor node without the need of any external
energy source. Although the KEH transducer that we used
in our experiments is larger and heavier than the solar cell
(18.03 cm2, 30.46 g vs. 14.7 cm2, 4.5 g), the average KEH
power is not sufficient to run the HAR model on the node
and thus provides energy negative HAR.

Fig. 13 plots the HAR accuracy and HAR power ratio of
individual activities for SEH- and KEH-based HAR indoors
and outdoors. We find that SolAR offers higher HAR accu-
racy and is energy positive across all activities indoors and
outdoors. KEH-based HAR instead is mostly energy negative
due to significantly lower harvested power (see Table IV).
The only exception, where KEH also delivers sufficient power
for end-to-end HAR is the running activity outdoors. Note that
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Fig. 13: HAR accuracy vs HAR power ratio for various human
activities using a small-sized and lightweight SEH (14.7 cm2,
4.5 g) compared to the KEH transducer (18.03 cm2, 30.46 g)

a custom-designed energy harvesting circuit with a perfectly
tuned KEH transducer may deliver higher power [38] than
observed in this study. While this could potentially result
in energy positive HAR for some dynamic activities, it is
impractical to tune the KEH transducer to specific scenarios.
Furthermore, KEH transducers are fundamentally unable to
deliver energy during mostly static activities. Because humans
generally spend a great proportion of their time performing
such activities, the average harvested energy from KEH trans-
ducers may not be sufficient to ensure the perpetual operation
of the wearable devices. Thus, SEH offers clear advantages
over KEH in terms of higher harvested energy, higher HAR
accuracy, as well as the fact that it does not require hardware
customization for different application scenarios.

In contrast to the previous work [7] that achieves energy
positive sensing only for signal acquisition using KEH, SolAR
ensures end-to-end energy positive HAR. We find that SEH
harvests 22.08 µW and 2.28 mW higher power than required
for running the end-to-end HAR model indoors and outdoors
respectively, as shown in Tables IV and V. This means that
the size of the solar cell can be reduced significantly or
additional harvested power can be used to run other body
sensors which ensures real-time, continuous and perpetual
monitoring of human health, fitness and activity without the
need of any external depletable energy source leading towards
truly pervasive IoT. Moreover, in order to achieve a better
trade-off between energy and HAR accuracy, a scheduling
technique [39], [40] can be devised which makes the best
use of the accelerometer, SEH and KEH signals for activity
recognition depending on the energy budget.

VII. CONCLUSION AND FUTURE WORK

In order to run wearable IoT devices perpetually, recently,
KEH transducers have been used as activity sensors as well
as source of energy simultaneously. However, the harvested
energy from human movements using miniaturized KEH trans-
ducers is not enough to run the wearable devices perpetually.



In this paper, we propose SolAR, a novel HAR mechanism
which employs solar cells for recognizing human activities as
well as to power the wearable device. As the human activities
interfere with the ambient light differently, the harvesting
signal from the wearable solar cell contains information about
the underlying activities. In order to explore the sensing poten-
tial of solar cells, we collect SEH data from 21 participants
performing five common human activities in indoor as well
as outdoor environments. After rigorous analysis, we find that
SolAR offers up to 8.3 % higher HAR accuracy compared to
the previous KEH-based HAR mechanisms. In addition, the
harvested power from wearable-sized solar cells is higher than
required for running the end-to-end HAR model on the sensor
node and thus ensures energy positive HAR.

It is worth mentioning that as SolAR requires a light source
for its operations, it may confront difficulties in recognising
the activities in dark environments (such as at night). Con-
sequently, our proposed system may face challenges such as
lower harvested energy, decreased sensing accuracy and higher
latency in activity transmission with significantly varying
ambient lighting conditions. However, these challenges can
be overcome by employing multi-source energy harvesters
(such as kinetic, thermal, RF) that provide energy and context
information concurrently. Furthermore, although we collected
SEH data on different days with distinct lighting conditions,
more detailed data can be collected from various scenarios
(e.g., different buildings with varying (indoor) light conditions
and different (outdoor) locations) in the future to thoroughly
investigate the performance of our system. Finally, the proto-
type that we used to evaluate our proposed algorithm is an
off-the-shelf evaluation board that does not have the required
harvesting and sensing circuitry and that building a fully
functional, low powered device implementing SolAR online
remains a challenge for future work.
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