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Abstract

Due to their favorable size, cost, and sustainability, battery-

free devices are preferable in various applications. However,

battery-free devices operate only intermittently since ambient

energy sources, such as light and radio-frequency signals, are

often too weak to continuously power the devices. This paper

addresses the unsolved problem of efficient device-to-device

communication in the face of intermittency. We present Find,

the first neighbor discovery protocol for battery-free wireless

networks that uses randomized waiting to minimize discovery

latency. We also introduce Flync, a new hardware/software

solution that synchronizes indoor light harvesting nodes to

powerline-induced brightness variations of widely used lamps,

which we exploit to further speed up neighbor discovery. Ex-

periments with an open-source prototype built from off-the-

shelf hardware components show that our techniques reduce

the discovery latency by 4.3× (median) and 34.4× (99th per-

centile) compared with a baseline approach without waiting.

1 Introduction

Despite technological advances, the maintenance costs and

environmental impact of batteries remain a major threat to the

vision of a truly ubiquitous Internet of Things [3,11]. Battery-

free devices that store energy harvested from light, vibrations,

radio-frequency (RF) signals, and other ambient sources in a

capacitor are one of the most viable alternatives today [45].

Capacitors store electrical energy in an electrical field rather

than in the form of chemical energy, and thus have negligible

aging effects and are sustainable [1, 6]. Moreover, their fa-

vorable size, weight, and cost points enable new applications

where batteries would be inconvenient or infeasible [30].

Challenge. The power that can be harvested from ambient en-

ergy sources can vary significantly across time and space [15],

and is often too weak to directly power a battery-free node,

such as a smart sensor [32]. Thus, as illustrated in Fig. 1 and

further discussed in detail in Sec. 7, a battery-free device first

needs to buffer sufficient energy in its capacitor before it can

operate for a short period of time; then the device turns off

Figure 1: Because ambient power is often weak, a battery-free node

must buffer energy before it can wake up and operate for a short

time period. This is known as intermittent operation.

until the capacitor is sufficiently charged again. As a result,

battery-free devices operate intermittently.

Intermittency is in stark contrast to conventional duty cy-

cling. While duty cycling is intentionally introduced to save

energy and thus predictable, intermittency is mainly dictated

by uncontrollable environmental factors and thus impacts the

device operation in unpredictable ways. The resulting chal-

lenges in terms of, for example, reliable time keeping [12,18]

or ensuring application progress and data consistency [8, 34]

have been widely studied in the recent literature.

The impact of intermittency on wireless networking has in-

stead received little attention. Just like in conventional battery-

supported networks, direct communication between battery-

free devices is desirable, for example, to increase the availabil-

ity of the system [36], to enable novel applications [20, 32],

and to reduce infrastructure costs [35]. However, to commu-

nicate with one another, sender and receiver must be active

simultaneously for at least the airtime of one complete packet.

This is challenging in battery-free networks for three reasons:

1. Battery-free nodes can only become active when they

have accumulated sufficient energy in their capacitors.

2. They may only be active for a short period, which renders

excessive sampling of the wireless channel infeasible.

3. Their duty cycles are often low and may change unpre-

dictably due to varying availability of ambient energy.

For example, our prototype battery-free node needs to charge

its capacitor for hundreds of milliseconds to sustain 1 ms of

activity when harvesting from indoor light. Because the short



(a) Battery-free nodes may need a long time to discover each other

due to low duty cycles and the interleaving of short activity phases.

(b) Using Find, nodes randomly delay their wake-ups to avoid inter-

leaving, thereby discovering each other faster and more efficiently.

(c) Using Find + Flync, nodes implicitly align their wake-ups to an

external synchronization signal, further accelerating discovery.

Figure 2: Illustration of the battery-free neighbor discovery challenge

in (a) and of our proposed mechanisms to address it in (b) and (c).

activity phases of different nodes are generally interleaved, as

shown in Fig. 2a, it takes a long time until nodes encounter

each other. And this is not a one-time endeavor: While nodes

may attempt to synchronize their activity phases at the first

encounter, they lose track of time during extended periods

without energy [12, 18], which forces them to re-synchronize.

This challenge is fundamental and pertains to battery-free

networks regardless of the type of wireless communication:

While backscatter communication can lower the energy costs

compared to active radio communication, sender and receiver

still need to have sufficient energy at the same time. Prior

work on backscatter has primarily focused on pushing the

envelope of communication range and throughput, avoiding

intermittency by evaluating the designs under high ambient

energy availability [20, 32] or by powering the devices via

USB or batteries to not disturb the measurements [35]. To our

knowledge, direct radio communication between real battery-

free devices has not been explored so far, as the overhead due

to intermittency is considered too demanding [36].

Contribution. We set out to bootstrap battery-free wireless

networks by presenting two mechanisms that enable battery-

free nodes to discover each other quickly and efficiently.

The first mechanism, Find, is a neighbor discovery protocol.

As illustrated in Fig. 2b, the key idea behind Find is to address

the interleaving problem by introducing random delays after

the devices have sufficiently charged their capacitors before

becoming active. We develop analytical models to determine

an optimized delay distribution that minimizes discovery la-

tency. At runtime, each Find node dynamically adapts the

delay distribution to changes in its energy availability.

The second mechanism, Flync, is a hardware/software solu-

tion that further speeds up the discovery process. Flync phase-

synchronizes solar energy harvesting devices to powerline-

induced flicker of state-of-the-art lamps; the proposed circuit

draws only 5 µW of power. As shown in Fig. 2c, using Find

together with Flync, nodes can implicitly align their activity

phases to this external synchronization signal, dramatically

increasing their chances to be active at the same time.

We prototype our mechanisms on a custom-designed ultra

low-power battery-free node. It is based on a state-of-the-

art microcontroller (MCU) with a 2.4 GHz Bluetooth Low

Energy (BLE) radio, and buffers energy harvested via three

small solar panels in a tiny 47 µF ceramic capacitor.

We use 6 of our prototype battery-free nodes to conduct

extensive experiments and a contact-tracing case study. We

summarize our key findings as follows:

• Find provides shorter discovery latencies than greedy and

naïve random node activations. Find + Flync improves

on greedy by 4.3× in terms of the median latency (141 s

vs. 604 s); the 99th percentile improvement is 34.4×.

• Our hardware prototype works with 14 out of 19 fluo-

rescent, halogen, and light emitting diode (LED) lamps

we tested, demonstrating that Flync is broadly applicable

in indoor environments. Flync provides a stable clock

signal when nodes are deployed across different rooms,

carried around, or exposed to temporary shadowing.

• We conduct a contact-tracing case study in an open-air

pub with Find and in an office kitchen using Find + Flync.

The median time between consecutive encounters of the

same two nodes is 1.5 s and 7.5 s in the outdoor and in-

door environment, respectively. This shows the potential

of our battery-free designs for real-world applications.

Overall, this paper makes the following contributions:

• Find, the first neighbor discovery protocol for battery-

free networks. Find is agnostic to the energy harvesting

modality and the type of wireless communication.

• Flync, the first solution extracting a stable clock from

solar harvesting current, whose amplitude changes due

to powerline-induced flicker of state-of-the-art lamps.

While we use Flync in tandem with Find to speed up

discovery in indoor scenarios, Flync is useful for other

purposes and also applicable to battery-supported nodes.

• A novel battery-free node design including an implemen-

tation of an efficient intermittent runtime.

• Empirical evidence that the proposed techniques work

well under a diverse set of real-world conditions.



2 Battery-free Neighbor Discovery

This section presents the design of Find, the first neighbor

discovery protocol for battery-free wireless networks. Find

empowers battery-free nodes to quickly discover each other’s

presence despite intermittent operation and varying ambient

energy availability. It is agnostic as to how the nodes harvest

energy (from solar, vibrations, RF, etc.) and as to whether they

communicate using backscatter or radio communication.

The design of Find is based on the observation that the only

way battery-free nodes can reliably avoid interleaving is to

not wake up and become active immediately after reaching

the minimum energy level required to do so. We refer to this

as the greedy approach. Instead, Find delays each wake-up

for a random time. A crucial question is how to choose this

random delay to ensure fast and energy-efficient discovery.

To answer this question, we devise a model that captures the

impact of key parameters, such as the charging time needed

to reach the minimum energy level and the random delay, on

the discovery latency (Sec. 2.1). Using this model, we then

determine an optimized delay distribution that minimizes the

discovery latency (Sec. 2.2). Finally, we describe how these

considerations materialize in the practical design of the Find

protocol and its runtime operation (Sec. 2.3).

2.1 Modeling Discovery Latency

Suppose that a node needs to charge for c slots until it reaches

the minimum energy level required to be active for one slot.

Let k0 denote the first slot in which a node reaches the min-

imum energy level. Using Find, a node waits for a random

delay x in units of slots before it wakes up and becomes active.

We model x as a discrete random variable X with probability

mass function (pmf) pX (x). During an active slot, a node

fully depletes its energy storage. The probability that a node

becomes active for the first time in slot k is given by

pwk,0(k) = pX (k− k0) (1)

Afterward, a node needs to recharge for c slots before it

can become active again. The time of the second wake-up is

the sum of the time of the first wake-up, the charging time,

and the second random delay. The same reasoning applies

recursively to all future wake-up times. Because the random

delay is independently chosen across all wake-ups, we can

use a recursive convolution to determine the probability that

a node wakes up for the n-th time in the k-th slot

pwk,n(k) = (pwk,n−1 ∗ pX )(k− c) (2)

By summing over n → ∞ we obtain the probability that a

node is active in slot k

pa(k) =
∞

∑
n=0

pwk,n(k) (3)

To model discovery latency, we consider a fully connected

network of N nodes (i.e., a clique of size N). Using a suitable
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(a) Random delay drawn from X ∼U [0,30].
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(b) Random delay drawn from X ∼U [0,60].

Figure 3: Probability of being active in a slot for two nodes with

identical charging times but an initial offset in their wake-ups. The

more wide-spread the random delay, the faster nodes break up their

interleaved wake-up pattern at the cost of a lower average duty cycle.

sequence of message exchanges in active slots (see Sec. 2.3),

one of the M = N(N −1)/2 bi-directional links i ↔ j is dis-

covered if nodes i and j are active in the same slot while all

other nodes in the network are inactive. Otherwise, a colli-

sion occurs and no link is discovered, a typical assumption in

neighbor discovery protocols [24]. The probability that link

i ↔ j is discovered within k slots is the complement of the

probability that the link is not discovered in slots 0, . . . ,k:

ci↔ j(k) = 1−
k

∏
κ=0

(

1− pa,i(κ) · pa, j(κ) · ∏
l 6=i, j

(1− pa,l(κ))

)

(4)

ci↔ j(k) can be regarded as the cumulative distribution func-

tion (cdf) of the discrete random variable describing the slot

in which link i ↔ j is discovered. With pi↔ j(k) denoting the

corresponding pmf, we compute the expected fraction of links

discovered up to slot k by averaging pi↔ j(k) over all M links

d(k) =
1

M
∑
i↔ j

pi↔ j(k) (5)

If the nodes’ charging times are finite, d(k) is a valid cdf,

and we define the discovery latency as

Tnd =
∞

∑
k=0

(1−d(k)) (6)

2.2 Optimized Delay Distribution

With the above model we are able to get a better understanding

of how nodes should delay their wake-ups to help discovery.

Example. Suppose two nodes i and j with the same charging

time of c= 100 slots, but different slots k0 in which they reach
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Figure 4: Cumulative distribution function of the slot in which two

nodes discover each other, for the two delay distributions in Fig. 3. A

more wide-spread delay performs better initially, but leads to lower

performance in the long run due to a lower average duty cycle.

the minimum energy level for the first time (i.e., initial offset).

Using (3) we plot in Fig. 3a for both nodes the probability of

being active in a slot when they pick random delays from the

discrete uniform distribution X ∼U [0,30]. We see that in the

first thousand slots there is hardly any overlap in the activity

of the nodes: Due to the initial offset, node i is likely active

when node j is powered off, and vice versa. The probability of

being active smears out over time and converges to an average

duty cycle of 1/(c+E[X ])≈ 0.0087. Fig. 3b plots the same

when the two nodes pick random delays from X ∼U [0,60].
Compared to Fig. 3a we find that the probability of being

active smears out sooner as nodes tend to choose more wide-

spread delays. However, as nodes also tend to pick longer

delays, they have a lower average duty cycle of 0.0077.

Fig. 4 directly compares the two delay distributions by

plotting the cdf of the slot in which nodes i and j discover each

other according to (4). We observe that the more wide-spread

delay induced by the second distribution X ∼U [0,60] initially

provides a higher probability of discovery. In the long run,

however, the higher average duty cycle of the first distribution

X ∼U [0,30] leads to a higher probability of discovery.

Choosing a distribution. The above example suggests that

a non-negative delay distribution with high randomness and

low mean is preferable. Entropy is a commonly used mea-

sure of randomness. Maximizing the entropy of a general

non-negative distribution with a given mean yields the ex-

ponential distribution [38]. Thus, in Find, we draw random

delays from the geometric distribution, the discrete analogue

of the exponential distribution, with scale parameter 1/r and

pmf (1− r)kr for k ∈ {0,1,2, . . .}.

To confirm our reasoning, we compare the geometric dis-

tribution against other well-known distributions, namely the

discrete uniform distribution and the Poisson distribution. We

sweep the scale parameter of the three distributions and com-

pute the discovery latency using (6) for the two-node case,

where nodes i and j have equal charging times (25, 100, 500,

or 1000 slots). We find that the geometric distribution achieves

the lowest discovery latency across all charging times. Fig. 5

shows the resulting curves for a charging time of 100 slots.

The differences in the minimum discovery latencies are rel-
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Figure 5: Discovery latency against scale parameter for three differ-

ent probability distributions. The geometric distribution performs

best as it yields delays with high randomness and low mean.

atively small. One reason for this is that, according to the

central limit theorem, the probability that a node wakes up

for the n-th time in slot k converges to a normal distribution

for large n, irrespective of the underlying delay distribution.

Determining optimized distribution parameters. Having

chosen a suitable delay distribution, we now turn to the prob-

lem of determining the scale parameter that minimizes the

discovery latency. To formally state the optimization problem,

we consider the worst case in terms of discovery latency: all N

nodes have the same charging time c, and their initial wake-up

times k0,i are all interleaved as in Fig. 3, that is,

k0,i = i ·
c+2E[X ]

N
(7)

where i is the node index and E[X ] is the expected delay. For

specific N and c, we minimize the discovery latency given by

(6) and the initial offsets given by (7)

min
r

Tnd(N,c) (8)

Numerical evaluation suggests that Tnd(N,c) is convex (see

Fig. 5) and hence straightforward to optimize. We use Brent’s

method [9] to approximate the scale parameter 1/r∗ that min-

imizes the discovery latency. The next section explains how

we adapt the scale parameter at runtime on a real node.

2.3 Practical Protocol Design

The above analysis makes a number of simplifying assump-

tions that do not hold in practice. For example, the charging

times are generally different across nodes and vary over time.

A node typically only knows its own charging time c and is

unaware of the total number N of nodes in the network.

Nevertheless, prior work has shown that neighboring nodes

have similar energy availability because they harvest energy

from the same ambient source(s) [4,15]. Thus, in the absence

of any prior information, a reasonable approach for a node

is to assume that its neighbors harvest the same amount of

energy and thus have the same charging time c like itself.

Moreover, we found that knowledge of the number of nodes

N is often not required: optimizing for the case of a two-node
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Figure 6: Discovery latency against network density ρ when opti-

mizing for the known density, for a fixed density of ρ = 1, and for a

two-node network. For ρ ≤ 2.5, all approaches perform similarly.

network yields competitive performance across a wide range

of network densities. In other words, in practice it is often

sufficient for a node to assume that it is has only one neighbor

(although over time it may discover that it has many more).

To understand why, we plot in Fig. 6 the discovery latency for

a charging time of 25 slots when optimizing for (i) the known

network density ρ=N/c, (ii) a fixed network density of ρ= 1,

and (iii) a two-node network. We can see that for a network

density of ρ ≤ 2.5 the three approaches achieve almost the

same performance. For realistic charging times, the network

density rarely exceeds this threshold. For example, based on

the charging times and beacon length in our real-world case

study (see Sec. 6), a network density of ρ = 2 would require

a network of around 4000 fully connected nodes.

Runtime operation. Prior to each wake-up, a Find node sam-

ples a geometric distribution to determine the random delay.

A node dynamically adapts the scale parameter of the distribu-

tion to changes in its charging time, under the assumption that

it has one neighbor with the same charging time, as explained

above. To achieve an efficient runtime operation, we store a

look-up table of optimized scale parameters in non-volatile

memory and use inverse transform sampling to convert sam-

ples from a uniform pseudo-random number generator to the

optimized, geometric distribution.

Frame structure. Taking inspiration from existing neighbor

discovery protocols for battery-powered sensor nodes [5, 13],

we adopt the frame structure shown in Fig. 7. During each

active slot, a node first transmits a beacon, then listens for po-

tential beacons from neighboring nodes, and finally transmits

another beacon at the end of the slot. The second beacon en-

sures that nodes can discover bi-directional links in one com-

mon active slot. Specifically, if the slot offset T between two

nodes (see Fig. 7) is uniformly distributed between −Tslot/2

and Tslot/2, where Tslot is the slot length, the probability that

two nodes successfully discover each other’s presence is

p = 1−
2 · (Tta +Ttx)

2 · (Tta +Ttx)+Trx

(9)

Here, as depicted in Fig. 7, Ttx, Trx, and Tta denote the times

Figure 7: Find’s frame structure specifying the sequence of beacon

transmissions and the intermediate listening window during an active

slot. Using our prototype implementation, nodes can successfully

discover each other if the slot offset T is between 88 µs and 848 µs.

needed to transmit a beacon, to listen for potential beacons,

and to switch from receive to transmit mode (or vice versa).

In order to maximize the success probability according to

(9), Find keeps the beacon transmission time Ttx as short as

possible to maximize the listening window Trx.

3 Further Accelerating Neighbor Discovery

Find provides fast and energy-efficient neighbor discovery

in battery-free networks. Nevertheless, if the ambient energy

availability is low, discovery may still take a long time due

to the low duty cycles. For example, according to our model,

under dim indoor light conditions it takes on average 8 min

until two of our prototype battery-free nodes (see Sec. 4)

discover each other. Similar observations are to be expected

when nodes harvest from weak RF signals or miniature vibra-

tions [7]. The discovery latencies in those challenging energy

environments can be prohibitively long for many applications.

This section introduces an approach that facilitates, accord-

ing to our model, a 10× speed-up in the above-mentioned

scenario, allowing two nodes to discover each other in 45 s on

average instead of 8 min at an additional cost of only 5 µW.

The underlying idea is that neighboring nodes harvest energy

from the same ambient source(s) and may therefore have ac-

cess to a common energy signal that can be used as a time

reference. In combination with Find, nodes can exploit this

common time reference to align their wake-ups, thereby in-

creasing the chances that nodes are active in the same slot.

To assess the potential of this idea, we focus in this work on

harvesting energy from indoor light. While this is a popular

method for powering battery-free nodes due to the ubiquity

of interior lamps, the energy density of indoor light is signifi-

cantly lower than that of sunlight. As such, it represents both

a challenging environment for battery-free neighbor discov-

ery and a highly relevant setting for real applications. In the

following, we provide answers to three key questions:

1. What common energy signal can nodes use? (Sec. 3.1)

2. How to efficiently extract a time reference? (Sec. 3.2)

3. How to exploit this for faster discovery? (Sec. 3.3)
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Figure 8: Time and frequency domain of solar panel current when

harvesting energy from light emitted by a UP-PL30120-45W LED

panel. The current varies with double the powerline frequency.

3.1 Powerline Flicker in Solar Current

When harvesting energy from indoor light, we observed that

the solar panel current varies with double the powerline fre-

quency (50 or 60 Hz depending on the region). As an example,

Fig. 8 shows the solar panel current when harvesting energy

from an LED panel light found in a typical office space.

Practically all indoor lamps are connected to mains power,

which induces phase-synchronized brightness variations (pow-

erline flicker) of the lamps through different effects. Despite

their relatively high inertia, the alternating current through the

filament of incandescent and halogen lamps causes temper-

ature and, as a result, brightness variations. A similar effect

occurs in gas-discharge lamps like the ubiquitous fluorescent

lamps, where the alternating current through the gas modu-

lates the brightness. Due to the exponential relation between

forward voltage and brightness, voltage-controlled LEDs are

also sensitive to residual ripple of the rectified supply voltage.

Because the power available from a solar panel is propor-

tional to the brightness of the incident light, it also varies with

double the powerline frequency, as visible in Fig. 8.

To assess the potential of using powerline flicker as a com-

mon energy signal, we characterize the magnitude of power-

line frequency induced fluctuations of the solar panel current

for a wide variety of lamps. To compare lamps across diverse

average brightness levels, we define the flicker index FI as the

ratio of the amplitude of the powerline frequency component

and the DC component of the solar panel current ip

FI =
Ip(2π · fpl)

Ip(0)
(10)

where Ip(ω) = F {ip(t)} is the Fourier transform of the solar

panel current and fpl is the powerline frequency.

We attach an IXYS SM141K06L solar panel to a Shepherd

node [15] and record 15 s of solar panel current at a sampling
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Figure 9: Flicker index for 19 tested lamps. The gray line marks the

sensitivity of our Flync prototype. The proposed circuit works with

all fluorescent and halogen lamps and the majority of LED lamps.

frequency of 100 kHz from each of the 19 lamps in Fig. 9.

For each trace we compute the flicker index using (10). The

results in Fig. 9 show that all lamps we tested exhibit varying

levels of powerline flicker. We observe that all fluorescent

and halogen lamps have a relatively large flicker index. The

results for the tested LED lamps are more ambiguous. We

suspect that highly integrated, bulb-shaped LED lamps tend to

have high-quality current-controlled drivers with little flicker,

whereas commercial panel-style LED lamps often rely on

voltage-controlled drivers with significant levels of flicker.

We conclude that most types of lamps exhibit significant

powerline flicker, which makes this an attractive common

energy signal. Next, we present our design of Flync, a hard-

ware/software solution that extracts a frequency- and phase-

synchronized clock signal from this common energy signal

on distributed battery-free nodes. The dashed line in Fig. 9 is

the measured sensitivity (see Sec. 5.2) of our Flync prototype,

showing that the proposed design works with all fluorescent

and halogen lamps and the majority of tested LED lamps.

3.2 Extracting a Clock from Solar Current

To be viable, Flync needs to provide a stable clock signal

while keeping the required energy costs as low as possible.

Hardware. We propose the circuit shown in Fig. 10, which

converts the modulated current signal from the solar panel into

a digital clock signal that can be connected to a general pur-

pose input/output (GPIO) pin of a MCU. The current through

shunt resistor RS causes a voltage drop that is filtered with a

narrow-band bandpass filter to extract and amplify the pow-

erline frequency component. We tune the band-pass filter to

a gain of 36 dB at a center frequency of exactly double the

powerline frequency, taking into account the limited gain-
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induced solar panel current variations (see Fig. 8 for an example).

bandwidth product of the low-power operational amplifier.

The resulting signal is connected to a comparator directly and

through a low-pass filter to convert it into a digital signal.

The TI TLV521 operational amplifier used in the band-pass

filter has a typical current draw of 350 nA, and the TLV7031

comparator has a typical current draw of 315 nA. Including

the losses over the 300 Ω shunt resistor, the Flync circuit draws

a total of around 5 µW under typical harvesting conditions.

This is orders of magnitude lower than the power draw of

related approaches, using a light sensor and an analog-to-

digital converter (ADC) (5.394 mW [31]) or an antenna to

extract the signal from powerline radiation (300 µW [42]).

Software. To achieve a stable clock signal, we use a phase-

locked loop (PLL) in combination with a proportional integral

derivative (PID) controller to synchronize the MCU’s real-

time clock (RTC) to the powerline frequency signal extracted

with our proposed circuit. In Sec. 4.2, we describe our soft-

ware implementation of Flync in more detail.

3.3 Exploiting the Clock for Faster Discovery

Using Flync, neighboring battery-free nodes have access to a

common clock. Nodes can use the phase information of this

clock to implicitly agree on times at which they potentially

become active. For the powerline flicker, this could be the

rising edges of the solar panel current (see Fig. 8).

When using Find without Flync, we set the slot length to

the duration of a node’s active period. When using Find with

Flync, we increase the slot length to 1/(2 · fpl) and let nodes

only become active at the beginning of a slot. This increases

the probability that nodes become active in the same slot. For

example, consider two nodes that randomly and uniformly

wake up once within a 1 s time window. Using a slot length

of 1 ms, the probability that both nodes wake up in the same

slot is 1/1000. With a slot length of 10 ms, this probability is

10× higher, which speeds up the neighbor discovery process.

Flync exploits the well-behaved, widely available powerline

flicker as sychronization source, but the concept applies to

any phase-synchronized signal available on different nodes.

Because the benefit in terms of a shorter discovery latency

stems from increasing the effective slot length, the signal’s

period must be longer than the duration of a node’s active

period. The lower the frequency, the longer the slot length

(a) Front (b) Back

Figure 11: Prototype battery-free node based on the nRF52840 MCU.

Solar panels on the back charge a tiny capacitor that powers the node.

and the greater the potential benefit. If the period is longer

than the charging time of a node, it can be divided down to

avoid nodes wasting energy while waiting for the next slot.

4 Prototype Implementation

This section describes the hardware and software components

of our prototype implementation.

4.1 Hardware

We design a low-power battery-free node that integrates the

circuit from Fig. 10. The node is based on a Nordic Semi-

conductor nRF52840 MCU, which features a 64 MHz ARM

Cortex-M4F and a 2.4 GHz radio with support for Bluetooth

5.2 and IEEE 802.15.4. The node harvests energy using three

23 mm× 8 mm IXYS KXOB25-05X3F solar panels. A TI

BQ25505 DC-DC boost converter steps up the voltage of the

solar panels and charges a 2 mm× 1.25 mm× 1.25 mm 47 µF

multilayer ceramic capacitor (MLCC). However, due to DC

bias, the capacitor has only an effective capacitance of around

17 µF at 3.3 V. The BQ25505 implements a maximum power

point tracking (MPPT) mechanism that aims to operate the

solar panels close to their optimal voltage of around 80 % of

the panels’ open-circuit voltage. The MPPT circuit obtains

a new reference voltage every 16 s by disabling the charger

for 256 ms and sampling the panels’ open-circuit voltage.

Once the capacitor voltage reaches a hardware-programmable

threshold of 3.3 V, the BQ25505 sets one of its pins high.

This pin is connected to a TI TS5A23166 analog switch that

connects the MCU to the capacitor-buffered supply voltage.

The two-layer printed circuit board (PCB) shown in Fig. 11

measures 29 mm × 29 mm. The total cost of all components is

$13.89, including $8.11 for the relatively expensive, highly in-

tegrated nRF52840 module. Comparing our design to recently

proposed battery-free platforms with similar capabilities in

Table 1, we see that our prototype is indeed one of the first

truly battery-free nodes in the sense that the energy storage is

negligible in terms of cost, size, and environmental impact:

The ceramic capacitor does not contain problematic materials,

costs $0.024, and takes up only 0.3 % of the PCB area.



Platform Year Capacitor Communication

Pible [14] 2018 220 mF super-cap BLE

luxBeacon [22] 2019 1.5 F super-cap BLE

Sigrist et al. [46] 2020 520 µF MLCC BLE

Botoks [12] 2020 100 µF MLCC 868 MHz

This work 2021 47 µF MLCC BLE PHY

Table 1: Our battery-free prototype node has a sustainable ceramic

capacitor that is significantly smaller and cheaper than the energy

storage of other recently proposed battery-free platforms.

4.2 Software

Next, we describe our implementation of an efficient runtime

for battery-free nodes. We also detail the PLL implementation

of Flync and key configuration parameters of Find.

Efficient runtime. Many existing battery-free runtimes dis-

charge the capacitor until the voltage drops below the min-

imum and the MCU is powered off [12, 17]. To avoid the

high energy costs of frequent hardware resets, we implement

a different approach that we call soft intermittency. During

charging, the MCU enters the lowest possible sleep mode, pe-

riodically waking up to sample the capacitor voltage with the

built-in ADC. In this mode, we measure a total average power

draw of 15 µW, including the power for the Flync circuitry and

software processing. When the capacitor voltage reaches a

software-defined turn-on threshold, the node arms the power-

fail comparator, a dedicated peripheral that raises an interrupt

when the capacitor voltage drops below a software-defined

turn-off threshold. Then the node executes protocol and appli-

cation code until it is notified by the power-fail comparator

upon which it immediately transitions to deep sleep, dras-

tically reducing its power draw until it has again buffered

enough energy. While this soft intermittency approach cannot

prevent hard resets when there is no energy input for sev-

eral hundreds of milliseconds, it greatly increases the average

efficiency without using additional comparators and switches.

Flync PLL. The comparator at the output of the circuit in

Fig. 10 has a relatively small hysteresis, occasionally causing

flickering at signal transitions. Furthermore, while MPPT ob-

tains a new reference value, the harvesting current approaches

zero, causing the clock signal to pause for hundreds of mil-

liseconds. To provide a stable clock signal despite these dis-

turbances, we implement a PLL that synchronizes the MCU’s

RTC to the signal extracted with the Flync circuit. We config-

ure the GPIO peripheral to generate an interrupt on a rising

edge at the GPIO pin connected to the output of the compara-

tor of the circuit. After a reset, we wait for the first GPIO

interrupt. Upon this interrupt, we set up an RTC interrupt to

reset the RTC counter after the nominal powerline frequency

interval. Ideally, all following GPIO interrupts should coin-

cide with that RTC interrupt. Thus, the counter value at the

time of the GPIO interrupt can be interpreted as phase devi-

ation between the external clock signal and the local timer.
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Figure 12: Example trace from a prototype node running Find.

We implement a control loop to continuously adjust the timer

period in order to minimize the phase deviation. In this way,

we obtain a highly stable interrupt that is phase-synchronized

with the variations of the solar panel current and works even

during the MPPT sampling or other disruptions.

Find settings. Each beacon in Find’s frame structure shown in

Fig. 7 consists of 2 B preamble, 3 B base address, 6 B payload,

and 1 B cyclic redundancy check (CRC). When using the

2 Mbit BLE mode of the radio, this corresponds to a beacon

transmission time of Ttx = 48µs. With 17 µF of capacitance,

the time required to start the high-frequency oscillator, and

a turn-around time of Tta = 40µs, we can afford a maximum

listening window of Trx = 800µs. As a result, two nodes can

successfully detect each other if they wake up with an offset

T between 88 µs and 848 µs (see Fig. 7).

4.3 Example Real-world Trace

Fig. 12 shows capacitor voltage and activities over time while

one of our prototype nodes runs Find. We see that the node

charges its capacitor until reaching the turn-on threshold of

3.3 V. It wakes up and samples a random delay from Find’s

optimized distribution. The necessary computations cause a

noticeable drop in the capacitor voltage when transitioning

from charging to waiting. After the random delay, the node

becomes active and quickly drains its capacitor below the

turn-off threshold of 2.8 V. The overview on the left side of

Fig. 12 also shows how the capacitor discharges during MPPT

at around 1.5 s. The detailed view on the right side shows the

individual stages while the node is active. We see that the

node first starts the high-frequency clock required to run the

radio. Then it sends the first beacon and starts to listen for

potential beacons from other nodes. After listening for 800 µs,

the node sends the trailing beacon. The remaining energy in

the capacitor is assigned to the application that can run until

the capacitor voltage hits the turn-off threshold.

5 Evaluation

We manufacture six prototype battery-free nodes to evaluate

Find and Flync. We first look at their effectiveness in terms

of discovery latency, followed by a detailed characterization

of Flync’s robustness and performance. Sec. 6 reports on the

results of a contact tracing case study based on our techniques.
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Figure 13: Discovery latency of four different approaches in a net-

work of 6 battery-free nodes. Our techniques outperform the compar-

ison approaches by up to 4.3× (median) and 34.4× (99th percentile).

5.1 Neighbor Discovery Performance

To fairly compare the neighbor discovery performance of our

techniques against baseline approaches, we conduct experi-

ments under controlled conditions. Sec. 6 reports on results

when using Find and Flync in uncontrolled environments.

Setup. All experiments are conducted in a darkened room

with a controllable light source. We place six prototype nodes

next to each other on a flat surface. The nodes are programmed

to output the ID of any discovered node over universal asyn-

chronous receiver transmitter (UART), while a logic analyzer

logs the output of every node. For each run, we let nodes wake

up with a random initial delay, and consider the measured time

until all 15 bi-directional links are discovered as the discovery

latency. We compare Find and Find + Flync with a greedy ap-

proach, where nodes become active as soon as their capacitor

voltage reaches the turn-on threshold, and a uniform approach,

where nodes randomly delay their wake-ups by a uniformly

distributed time. Overall, the measurement campaign took

more than 4 days, in which we performed between 48 and

128 runs for each of the four approaches.

Results. Fig. 13 shows the measured discovery latency for

each approach, including the median, the 25th and 75th per-

centiles, and the 1.5× of the interquartile range. Clearly, the

greedy approach performs worst. This is mainly because of

interleaved activity phases of the nodes, as visible from the

trace in Fig. 14. If we zoom in on the first three and the last

three wake-ups in the trace, we notice that nodes repeatedly

wake up with the same pattern that prevents discovery despite

different charging times and MPPT intervals. In Fig. 15, in-

stead, we see that when nodes use Find to randomly delay

each wake-up, they are more likely to be active at the same

time. For instance, at about 4.5 s, the nodes wake up with an

offset of less than 848 µs and are therefore able to success-

fully exchange beacons as shown in the detailed plot on the

right side of Fig. 15. This explains the significant reduction

in median discovery latency from 604 s with greedy to 390 s

with Find, as visible in Fig. 13. We also see that Find’s op-

timized delay distribution performs slightly better than the

uniform approach (median of 431 s), which matches the mag-

nitude of improvement predicted by our model (see Fig. 5).
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Figure 14: Interleaved activity phases of two nodes when using the

greedy approach. The zoomed in plots on the bottom show that,

despite the disturbances caused by MPPT, the two nodes repeatedly

wake up with the same pattern, preventing successful discovery.
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Figure 15: Using Find, nodes prevent interleaving by delaying each

wake-up by a small random time, enabling quick discovery.

Find + Flync achieves the lowest median discovery latency of

142 s, which corresponds to an overall improvement of 4.3×
(median) and 34.4× (99th percentile) compared with greedy.

5.2 Flync Sensitivity

To extract a clock signal, the Flync circuit requires a minimum

magnitude of the powerline frequency component in the solar

panel current. We empirically determine the corresponding

minimum flicker index for our hardware prototype.

Method. The magnitude of the powerline frequency com-

ponent is proportional to the DC component and decreases

with smaller panel size and increasing distance from the light

source. We define the worst-case minimum flicker index as

the flicker index sufficient to extract a clock signal even at the

lowest possible harvesting current. The latter is defined by the

minimum power requirements of our prototype when running

Find, the panel voltage, and the corresponding efficiency of

the DC-DC converter. Our solar panels have a typical panel

voltage of 1 V at the maximum power point. At this voltage,

our DC-DC converter has an efficiency of 80 %. Thus, the

minimum harvesting current to cover the power requirements

of our prototype of about 37.5 µW is 50 µA.

We use a Keithley 2600B sourcemeter to generate a current

signal with a DC offset of 50 µA while sweeping the ampli-
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Figure 16: For a flicker index ≥0.008 Flync provides a stable clock.
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Figure 17: Current signal and time difference between two nodes

while one node changes its distance and angle to the light source.

tude of the 100 Hz AC component. The current is fed to the

input of our prototype that is usually connected to the solar

panel. By limiting the voltage at the output of the sourcemeter

to 1.25 V, the MPPT circuit regulates the input to around 1 V.

For every setting of the AC amplitude, we record 5 s of clock

signal with a mixed-signal oscilloscope. To quantify the qual-

ity of the clock signal, we compute the correlation coefficient

between the signal and a phase-aligned 100 Hz reference. We

repeat these measurements for four of our prototype nodes.

Results. The results in Fig. 16 show that there is a distinct

threshold at around FI = 0.008 beyond which all nodes begin

to output a clean clock signal. Comparing this with Fig. 9,

we conclude that, with the exception of 5 LED lamps, our

prototype works with the vast majority of the lamps we tested.

5.3 Flync Robustness

We now assess the robustness of Flync when a node changes

its position and orientation relative to the light source, when

the solar panels of a node are temporarily covered, and when

electrical loads are temporarily connected to the same power

strip. To this end, we experiment with two nodes powered by

a desk lamp and connect them to an oscilloscope. We quantify

robustness by measuring the time difference between clock

edges on the two nodes. As a benchmark, we note that our

implementation can tolerate a time difference of up to 848 µs.

Mobility. We keep one node static and attach the other one

to the wrist of a person. The person waves, changing distance

and angle between the node’s solar panels and the light source.

Fig. 17 shows a period where the node moves closer and

farther away from the lamp. The changes in the amplitude of

the current signal affect the time difference between the nodes.
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Figure 18: Capacitor voltage and time difference between two proto-

type nodes while temporarily covering the solar panel of one node.

The comparator that thresholds the sine wave uses a low-pass

filter that reacts slowly to changes in the average amplitude.

As a result, the clock signal deteriorates temporarily, causing

an increased time difference of up to 1 ms. However, after a

short while, the time difference recovers to previous levels.

Shadowing. To investigate the impact of shadowing, we put

both nodes on a table and temporarily cover one of them by

slowly moving a hand between the lamp and the node.

Fig. 18 shows that the time difference increases after cover-

ing the panel as the PLL loses its reference signal. However,

without significant energy input, the node does not reach the

turn-on threshold, which renders communication infeasible

anyhow. As soon as the panel is uncovered, the node quickly

charges up again and, after less than a second, the clock re-

turns with a small time difference.

Electrical loads. We repeatedly switch on and off a drilling

machine and a vacuum cleaner connected to the same power

strip as the lamp. We do not observe any noticeable effect of

the loads on the time difference between the two nodes.

5.4 Flync Jitter

In a final set of experiments, we look at the time difference

between the clock signals of different nodes when these are:

(i) powered by a single light source, (ii) placed in different

rooms, and (iii) powered by different types of light sources.

Testbed. For these experiments, we built a distributed testbed

of observer nodes. The observer nodes are accurately time-

synchronized to within 479 ns, and record the clock signals

of the attached prototype nodes with a resolution of 62.5 ns.

Single light source. We place six of our prototype nodes in

the same room with a single halogen lamp. The experiments

are conducted during the day, and the nodes receive a mixture

of natural sunlight and artificial light from the lamp. Using

our testbed, we record the clock edges of all six nodes for 1 h.

Fig. 19 shows the pairwise time difference between nodes.

Because the phase offset resulting from propagation delays of

light is negligible, the jitter must be introduced on each node.

For example, a slight difference in the offset voltage of the

comparator can lead to a significant mean difference of the
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Figure 19: Pairwise time difference between clock edges on different

prototype nodes when these are powered by a single light source.
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Figure 20: Pairwise time difference between clock edges on proto-

type nodes placed in different rooms with the same type of lamp.

resulting clock signal. Nevertheless, with 95 % of the more

than five million recorded pairs below 244 µs, the jitter is well

below the 848 µs tolerated by our Find implementation.

Different rooms. We conduct experiments in three rooms of

an office building equipped with fluorescent tubes. The rooms

are located on a long hallway with a distance of around 15 m

between the middle room and the other two. We place two

nodes in each room, and record with our testbed for 4 h while

the nodes receive light from the tubes as well as sunlight.

Fig. 20 shows that there is a small offset between rooms

2 and 3 with 95 % of the recorded values being smaller than

700 µs. The offsets between rooms 1 and 2 and rooms 1 and

3 are centered around 3.3 ms. While residential homes are

often connected to a single phase, larger apartment blocks or

commercial buildings are typically fed by three-phase power.

Apparently, the lights in room 1 are connected to a different

phase than the lights in rooms 2 and 3, leading to a 60° phase

and 3.3 ms time shift between the light intensity variations.

Thus, when nodes need to discover neighbors across rooms

with lights potentially connected to different power phases,

they must be able to become active not only at the edge of

their own Flync clock signal, but also with a 60° phase shift.

Different types of light sources. We plug an LED, a fluores-

cent, and two halogen lamps into the same power strip. We

place one node under each lamp so that it only receives light

from this lamp, and record for 30 min with our testbed.

Fig. 21 reveals large offsets between the clocks of nodes

powered by different types of lamps. These offsets are due

to varying phase shifts between the powerline voltage and

the brightness variations of the lamp. For example, although

the current through an incandescent lamp is in phase with

the supply voltage, the filament may take some time to heat
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Figure 21: Pairwise time difference between clock edges on different

prototype nodes when these are powered by different types of lamps.

up and cool down, leading to the observed phase shift. Other

types of lamps contain inductors or capacitive elements, a

switching power supply, or an electronic ballast that cause

different phase shifts. This shows that Flync does not work out

of the box when different nodes are powered by different types

of lamps. The static phase shifts would need to be measured

during deployment or learned at runtime. On the other hand,

Flync may not work reliably when individual nodes receive

a mixture of light from different types of lamps. The results

from the previous experiments (see Figs. 19 and 20) show

that Flync works well when nodes receive a mixture of natural

sunlight and artificial light from the same type of lamp.

6 Case Study: Contact Tracing

Automatic contact tracing is important to contain the spread of

infectious diseases (e.g., SARS-CoV2) in a scalable manner.

It allows to quickly identify contacts of an infected person

and to quarantine potentially infected individuals before they

become contagious. To assess the potential of our proposed

designs for real-world battery-free applications, we conduct a

contact tracing case study with our prototype nodes.

Setup. We attach six nodes to the shirts of human partici-

pants, as shown in Fig. 22a. The nodes run the Find protocol,

logging the timestamp and ID of each discovered node to

non-volatile memory. As we are only interested in relatively

close contacts that would allow a virus to transmit from one

person to another, we set the transmission power of the bea-

cons to −16 dBm. We run experiments indoors and outdoors,

as detailed below. After each run, we dump the content of the

non-volatile memory of each node to a computer for analysis.

(a) Node on shirt. (b) Setup of experiment in an open-air pub.

Figure 22: Battery-free contact tracing.
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ment. Vertical markers show rendezvous with the respective person.

Indoor experiment: coffee kitchen. Two persons sit at a ta-

ble in a small coffee kitchen, roughly 1.5 m apart from each

other. After 3 min a third person enters the kitchen and pre-

pares a coffee for 2 min. The kitchen is equipped with fluo-

rescent lamps, and we use Flync together with Find.

Fig. 23 plots the charging times and recorded rendezvous

of the three nodes over time. We see a total of 49 received bea-

cons. All contacts are logged successfully with low latency,

despite the relatively long charging times of hundreds of mil-

liseconds. Specifically, the first contact between persons 1 and

2 is detected after 43.9 s. When person 3 enters the kitchen, it

takes 26.6 s and 17.9 s until the contacts with persons 1 and 2

are detected, respectively. Overall, the median time between

rendezvous of the same two nodes is 7.5 s.

Outdoor experiment: open-air pub. Three pairs of persons

sit at opposite sides of three tables (see Fig. 22b). Two ta-

bles are next to each other; the third table is at a distance of

around 4.5 m. We perform the experiments in the morning

of a slightly overcast day at an open-air pub without direct

sunlight. Receiving only natural sunlight, the nodes do not

make use of Flync. We conduct three consecutive 15 min runs.

We measure a total of 4426 received beacons. All contacts

between persons on the same table are successfully recorded.

More importantly, contacts between persons on different ta-

bles in close vicinity are also reliably detected. Due to the low

transmit power, we do not see any rendezvous between the

first two tables and the third remote table, which is expected

and in fact desirable because we only want to trace contacts

that are associated with an actual risk of virus transmission.

Fig. 24 shows the histogram of the time between consecu-

tive rendezvous between the same two nodes. As expected,

the time between rendezvous is approximately exponentially

distributed, and the mean is estimated between 2.61 s and

2.78 s with 95 % confidence. This means, under the given

conditions, we are able to detect contacts with a resolution of

around 2.67 s, allowing for fine-grained contact tracing.
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Figure 24: Histogram of the time difference between rendezvous of

the same two nodes in the open-air pub experiment.

Summary. The results from our contact tracing case study

show that Find and Flync are also effective under uncontrolled

real-world conditions. Outdoors, energy availability is high

and therefore Find alone enables fast rendezvous and fine-

grained contact tracing. Indoors, Flync can compensate for the

significantly lower energy density of interior light, providing

decent performance even under these challenging conditions.

7 Discussion

We have presented two novel techniques that enable for the

first time efficient device-to-device communication in the

face of intermittency. By introducing random delays, Find

breaks interleaved activity patterns of battery-free devices to

discover each other faster and more efficiently. By tapping

into the powerline-induced flicker of state-of-the-art lamps,

Flync phase-synchronizes devices that harvest energy from

indoor light. While we have exploited Flync to further speed

up discovery in battery-free networks, Flync is useful for other

purposes and also applicable to battery-supported devices.

Recent work tackles the intermittency problem on individ-

ual battery-free devices in terms of, for example, computing

and time keeping [8,12,18,34]. We instead focus on communi-

cation between battery-free devices that operate intermittently.

Like prior work, our techniques are relevant if intermittency

makes traditional approaches inefficient or unreliable. To un-

derstand the scope of our work, we discuss intermittency and

relevant impact factors below. Afterward, we discuss the in-

fluence of built-in randomness on our proposed techniques.

7.1 When Does Intermittency Occur?

A battery-free device goes through periods with low power re-

quirements (e.g., system-off and sleep modes) and high power

requirements (e.g., sensing, processing, and communication).

Since the instantaneous power available from a harvester is of-

ten insufficient to support a battery-free device during periods

with high power requirements, some form of energy storage

is needed that buffers energy when the device is inactive to

support a high-power workload for a short period of time.

The minimum size of the energy storage is determined by

the demands of the largest atomic operation that must not be

interrupted. For example, to transmit or receive a packet, the

buffered energy needs to be sufficient to power the radio for

at least the airtime of one complete packet; other examples of

atomic operations include reading out a sensor or executing



a checkpoint [21]. In our proposed Find protocol, the largest

atomic operation is the frame sequence depicted in Fig. 7.

If a device with an active power draw higher than the har-

vesting power is equipped with an energy storage that does

not support executing multiple iterations of the largest atomic

operation from a single full charge, it is forced to go through

periods of inactivity—the device is said to operate intermit-

tently. Intermittency is in stark contrast to duty cycling, which

is intentionally used on devices with primary or rechargeable

batteries, yet the devices can become active at any point in

time subject only to an upper bound on the average duty cycle.

By contrast, intermittency prevents a device from becoming

active at any point in time, and when a device enters and exits

the inactivity phases is only partially controllable, at best.

7.2 What Factors Impact Intermittency?

Three key dimensions influence the extent of the intermittency

problem: energy input, energy storage, and workload.

Energy input. An ambient energy source may exhibit inter-

mittent behavior, including periods where it emits no energy.

Clearly, a battery-free device can only harvest energy when

the ambient source emits energy. In this case, provisioning a

device with a harvester that provides the power required to

continuously operate the device in high-power mode prevents

the intermittency problem. This, however, would come with

major drawbacks in terms of size, weight, and costs. For ex-

ample, a battery-free device may draw only 10 µW on average

but 10 mW when active, thus requiring to over-provision the

harvester by a factor of 1000. While such over-provisioning

is in theory always possible, it is severely limited in practice

by the constraints imposed by the application requirements.

Energy storage. If permitted by the application requirements,

an energy storage larger than the minimum required to exe-

cute the largest atomic operation may be used. For example,

using a high-capacity rechargeable battery can prevent inter-

mittency. Such batteries have a high energy density, but their

minimum physical dimensions are typically orders of magni-

tude larger than those of capacitors. Batteries are also more

expensive and subject to aging, losing capacity over time and

eventually malfunctioning with excessive heat and leakage of

potentially toxic chemicals. By contrast, capacitors have low

energy density, but are extremely cheap, readily available in

sizes well below 0.1 mm3, have negligible aging effects, and

do not contain problematic materials (e.g., toxic chemicals).

Thus, despite advances in battery technology, alternative sys-

tems to store energy are being explored [3] and capacitors are

widely regarded as a more sustainable option [11, 45].

When a device is inactive, it accumulates charge until the

capacitor voltage reaches a turn-on threshold. The amount of

energy that can be stored depends on the turn-on threshold,

which is limited by the breakdown voltage of the capacitor

and the device’s maximum operating voltage. When a device

is active, it discharges the capacitor until the voltage reaches a

turn-off threshold, which is dictated by the device’s minimum

operating voltage. Thus, for the same capacitor, a device with

a lower minimum operating voltage or a higher maximum op-

erating voltage can increase the effective amount of buffered

energy that can be used. This allows to either use a smaller ca-

pacitor or execute longer from a single full charge, potentially

alleviating the intermittency problem.

Workload. While lower-power hardware can reduce the av-

erage power draw in sleep mode and thus the charging time,

it does not generally avoid intermittency. This would require

pushing also the active power below the harvesting power.

Reducing the transmission power of the radio can extend

the time a device can operate from a single full charge. While

this may alleviate the intermittency problem, it also reduces

the communication range, which may render device-to-device

communication infeasible or require multi-hop networking.

Similarly, using backscatter communication instead of ac-

tive radio communication may bring the active power draw

of a device below the harvesting power and thereby enable

continuous operation. However, backscatter requires the pres-

ence of an external carrier and may pose limitations in terms

of communication range and data rate. In particular, existing

practical implementations of tag-to-tag backscatter receivers

do not yet reach the point where the end-to-end power draw is

negligible (i.e., below sleep power of around 1 µW) [35, 39],

thus leaving a significant region in the design space of battery-

free backscatter devices where intermittency occurs.

7.3 Impact of Built-in Spatial Randomness

Find tackles interleaving by letting nodes randomly and inde-

pendently delay their wake-ups. This approach is particularly

effective in scenarios with little built-in spatial randomness,

that is, when the harvested energy exhibits limited variability

between nodes, regardless of a potentially high temporal vari-

ability in harvested energy. We believe this holds for a broad

class of battery-free application scenarios, because nodes in a

confined space often harvest energy from the same ambient

source(s). On the other hand, a high built-in spatial random-

ness may alleviate the interleaving problem. Although our

case study experiments exhibit built-in spatial and temporal

randomness, it remains an open question how built-in spatial

randomness may influence the choice of Find’s delay distribu-

tion and scale parameter as well as its overall effectiveness.

8 Related Work

Battery-free device-to-device communication. Prior work

on battery-free wireless device-to-device communication is

mainly theoretical [25, 51], studying the capacity limits for

different energy scheduling, transmission, and decoding poli-

cies. Understanding energy issues on the receiver side [2] and

the impact of intermittency have been open problems. On the

other hand, practical work on tag-to-tag backscatter commu-

nication has primarily focused on physical-layer issues and

considers intermittency an orthogonal problem [20, 32, 35].



Work Type Sensing Signal Power

Syntonistor [42] frequency EM radiation 300 µW

Flight [31] frequency light sensor 5394 µW

Flync freq.+phase solar current 5 µW

Table 2: Compared with prior work using powerline frequency for

synchronization, Flync provides frequency and phase synchroniza-

tion from the solar panel current at significantly lower power draw.

Rendezvous and neighbor discovery protocols. Blind ren-

dezvous is the process of establishing a communication link

between nodes in a distributed system without any prior in-

formation [16]. Neighbor discovery protocols for wireless

networks target a sub-class of the blind rendezvous problem

with the goal of optimizing the trade-off between discovery

latency and energy consumption. Deterministic protocols let

nodes wake up according to a schedule based on (co-)prime

numbers [13, 23], a quorum [19, 27, 28], or by systematically

traversing slots [5,50]. This way, they can provide guaranteed

bounds on discovery latency [24]. Probabilistic protocols are

stateless, robust to varying conditions, and offer low average

discovery latency [10]. For example, the influential birthday

protocol [37] and follow-up work [48, 49] analyze optimal

transmit probabilities to maximize the fraction of links discov-

ered in a given time. However, none of the existing neighbor

discovery protocols are applicable to battery-free networks

because they require nodes to be able to wake up at arbitrary

points in time, not taking into account intermittency.

Powerline-based clock synchronization. We are not the first

to exploit the powerline frequency signal for synchroniza-

tion. The Syntonistor extracts a stable clock signal from

electromagnetic (EM) powerline radiation using a large

coil [42]. It draws 300 µW of power, 60× more than Flync.

Flight samples a light sensor to synchronize a node’s oscillator

to the powerline-induced brightness variations of fluorescent

lamps [31]. Using Flight, synchronization takes 100 ms at a

power draw of 5394 µW, 1000× more than Flync. As sum-

marized in Table 2, both approaches only synchronize the

frequency of local clocks, eliminating the need to periodically

compensate for clock drift, but do not exploit phase informa-

tion. They also use dedicated high-power sensors, whereas

Flync uses a low-power circuit to extract the signal from the

current of the solar panel.

Energy harvesters as sensors. Previous work has explored

the use of the harvesting current or voltage as a sensing sig-

nal for indoor positioning [41], gait recognition [33], gesture

recognition [47], activity classification [44], and transport-

mode detection [43]. To the best of our knowledge, we are

the first to exploit context information from harvested energy

for synchronization. Furthermore, Flync is the first design that

extracts the sensing signal from current variations of a solar

panel that is simultaneously used to power the system.

Visible light communication. Flync exploits the powerline-

induced brightness variations as an intrinsic property of ubiq-

uitous lamps. When modifying existing lighting infrastruc-

ture, it is possible to encode arbitrary data into the brightness

variations. This opportunity has been used for downlink com-

munication [40], indoor positioning [26], and battery-free

duplex visible light communication [29]. By modulating light

with a well-defined synchronization signal, the efficiency and

applicability of Flync could be further improved. Also, our

approach to harvest energy while simultaneously demodulat-

ing encoded signals from the same panel may reduce the size

and power of existing visible light communication receivers.

9 Conclusions

Leaving batteries behind allows for building cheap, tiny, and

maintenance-free devices that can be embedded into smart

textiles, intelligent surfaces, or even the human body. In this

paper, we have addressed the problem of enabling efficient

battery-free device-to-device communication. Experiments

with a prototype platform and implementation show that our

proposed techniques empower battery-free devices to quickly

and efficiently discover each other despite their unpredictable

intermittent operation. By bootstrapping battery-free wireless

networks, we believe that our work provides a stepping stone

for future research toward full system and communication

stacks for this emerging kind of networked system.

Availability

Artifacts are available to the public under a permissive MIT

license at https://find.nes-lab.org/. These include a

Python implementation of the Find model from Sec. 2, which

can be used to reproduce the analytical results in Figs. 3 to 6,

as well as the hardware design files and the firmware of our

prototype implementation from Sec. 4, which we used for the

experiments and case study described in Secs. 5 and 6.
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