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ABSTRACT
This paper presents Glossy, a novel flooding architecture for wire-
less sensor networks. Glossy exploits constructive interference of
IEEE 802.15.4 symbols for fast network flooding and implicit time
synchronization. We derive a timing requirement to make concur-
rent transmissions of the same packet interfere constructively, al-
lowing a receiver to decode the packet even in the absence of cap-
ture effects. To satisfy this requirement, our design temporally de-
couples flooding from other network activities. We analyze Glossy
using a mixture of statistical and worst-case models, and evaluate it
through experiments under controlled settings and on three wireless
sensor testbeds. Our results show that Glossy floods packets within
a few milliseconds and achieves an average time synchronization
error below one microsecond. In most cases, a node receives the
flooding packet with a probability higher than 99.99 %, while hav-
ing its radio turned on for only a few milliseconds during a flood.
Moreover, unlike existing flooding schemes, Glossy’s performance
exhibits no noticeable dependency on node density, which facili-
tates its application in diverse real-world settings.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—wireless communication; C.2.2 [Computer-
Communication Networks]: Network Protocols

General Terms
Design, Experimentation, Performance

Keywords
Network Flooding, Time Synchronization, Concurrent Transmis-
sions, Constructive Interference, Wireless Sensor Networks

1. INTRODUCTION
Network flooding and time synchronization are two fundamental

services in wireless sensor networks; they form the basis for a wide
range of applications and network operations.
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Many real-world applications rely on a seamless coexistence of
both services. For instance, high-rate data collection systems syn-
chronize nodes to correlate measurements, and use flooding to ad-
just sampling rates and trigger data downloads [33]. Most of these
applications run two protocols in parallel (e.g., Trickle [19] and
FTSP [22]), which complicates their design and may cause pro-
tocol interactions that impair system performance [5]. A flooding
service that implicitly synchronizes all nodes in the network could
effectively avoid these problems.

Such an integrated service should flood packets as fast as pos-
sible to reduce inaccuracies introduced by clock drift [18]. More-
over, rapid flooding can enhance the performance of several appli-
cations [21]. In surveillance systems, for example, a node detecting
an event needs to quickly wake up all other nodes to initiate group
formation and collaborative signal processing [20].

Challenges. Rapid flooding is difficult in wireless networks where
packet loss is a common phenomenon [37]. Retransmissions to re-
cover lost packets help to overcome this problem. However, simple
broadcasting results in serious medium contention, known as the
broadcast storm problem [23]. To reduce the transmission over-
head, nodes need to acknowledge broadcasts using sophisticated
modulation schemes [8], encode redundancy into packets prior to
transmission [24], or collect substantial information from neigh-
boring nodes to decide whether a retransmission is necessary [35].
Therefore, loss recovery generally sacrifices latency and energy for
an increased reliability.

Alternatively, reliability can be improved by reducing the risk of
packet loss in the first place. One possible approach is to sched-
ule broadcasts so that they do not interfere with each other. How-
ever, determining an interference-free broadcast schedule is an NP-
complete problem [12] and subject to sudden topology changes.

In fact, due to the capture effect, a node can receive a packet de-
spite interference from other wireless transmitters [17]. While the
capture effect helps to improve flooding efficiency, it suffers from
scalability problems in areas of high node density: the probabil-
ity of receiving a packet decreases considerably as the number of
overlapping transmissions increases [21].

Contribution and road-map. To tackle the issues above, we pro-
pose Glossy, a new flooding architecture for wireless sensor net-
works. Glossy considers interference an advantage rather than a
problem. Unlike previous work, it makes simultaneous transmis-
sions of the same packet interfere constructively, allowing receivers
to decode the packet even in the absence of capture effects. In this
way, Glossy achieves a flooding reliability above 99.99 % and ap-
proaches the theoretical lower latency bound across diverse node
densities and network sizes. Moreover, Glossy provides network-
wide time synchronization for free, since it implicitly synchronizes
nodes as the flooding packet propagates through the network.



This paper makes the following contributions:
• We study in Sec. 2 why and under which conditions overlapping

transmissions of the same packet interfere constructively. Our
analysis reveals a strong dependency on the modulation scheme.
Based on this insight, we show that the temporal offset among
concurrent IEEE 802.15.4 transmitters must not exceed 0.5µs to
generate constructive interference with high probability.
• We introduce Glossy, a new flooding architecture for wireless

sensor networks. Glossy exploits concurrent transmissions, time-
synchronizes nodes, and decouples flooding from other network
activities. We give an overview of Glossy’s design in Sec. 3, and
detail its radio-driven execution model in Sec. 4.
• We demonstrate in Sec. 5 the feasibility of Glossy with an imple-

mentation in Contiki [1] based on Tmote Sky sensor nodes. We
describe how our implementation reduces time uncertainties on
the nodes during packet relaying, and give guidelines for porting
Glossy to other popular hardware platforms.
• We present in Sec. 6 a mixture of stochastic and worst-case mod-

els to analyze the robustness of our techniques in generating con-
structive interference. Applying these models to our implemen-
tation, we find that Glossy satisfies the 0.5µs requirement with
a probability higher than 99.9 % for 30 concurrent transmitters.
In Sec. 7, we evaluate Glossy using experiments under controlled

settings and on three wireless sensor testbeds, including Twist [14]
and MoteLab [34]. For example, we find that Glossy achieves an
average time synchronization error below 0.4µs, even at nodes that
are eight hops away from the initiator of a flood. On Twist, at the
lowest transmit power that keeps the network fully connected, we
observe that nodes receive an 8-byte flooding packet within 3 ms;
nodes receive the packet with a probability above 99.99 %, and
have their radios turned on for less than 10 ms during a flood.

In light of our contributions, we survey related work in Sec. 8,
and end the paper in Sec. 9 with brief concluding remarks.

2. CONCURRENT TRANSMISSIONS
Glossy exploits concurrent transmissions for efficient flooding in

sensor networks. In this section, we investigate the conditions for
making concurrent transmissions of the same packet interfere in
a constructive way, so that a receiver detects the packet with high
probability. We give some background on wireless interference and
the IEEE 802.15.4 modulation scheme, based on which we deter-
mine a timing requirement for generating constructive interference.

2.1 Background
The broadcast nature of wireless communications causes inter-

ference whenever spatially close stations transmit concurrently; that
is, when they generate signals that overlap in time and space, and
share the same frequency. Interference generally reduces the prob-
ability that a receiver correctly detects the information embedded
into the signals, even when the signals carry the same information.
In the following discussion we focus on baseband signals, that is,
sequences of IEEE 802.15.4 symbols. As we show in Sec. 7, the
superposition of several, possibly out-of-phase carrier signals al-
lows for correct detection with high probability, especially when
more than three nodes transmit concurrently.
Constructive and destructive interference. Interference is con-
structive if a receiver detects the superposition of the baseband sig-
nals generated by multiple transmitters. By contrast, interference
is destructive if it prevents a receiver from correctly detecting the
superimposed baseband signals. In sensor networks, constructive
interference has not been extensively exploited, due to the diffi-
culty of achieving sufficiently accurate synchronization and the re-
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Figure 1: IEEE 802.15.4 modulation. Using a three-step process,
binary data are converted into a modulated signal.

quirement of highly predictable software delays [30]. Several pro-
tocols [21] exploit instead the capture effect, which occurs when a
wireless radio detects a signal from one transmitter despite the in-
terference from other transmitters. A radio may capture one signal
when it is stronger than the others (power capture [17]), or when it
starts being received significantly earlier than the others (delay cap-
ture [7]). However, the capture effect suffers from scalability prob-
lems when many transmissions overlap, leading to packet loss [21].

Requirements for generating constructive interference strongly
depend on the communication scheme, especially on the modu-
lation and the bit rate. We first review the specifications of the
IEEE 802.15.4 standard. Then, we derive an upper bound on the
temporal displacement ∆ among multiple concurrent transmissions
of the same packet that allows to correctly receive the packet with
high probability due to constructive interference.
IEEE 802.15.4 modulation. The IEEE 802.15.4 standard [15] for
wireless devices operating in the 2,450 MHz band employs an off-
set quadrature phase-shift keying (O-QPSK) modulation scheme
with half-sine pulse shaping, which is equivalent to minimum-shift
keying (MSK). Binary data are converted into a modulated analog
signal using a three-step conversion process, as shown in Fig. 1.

First, data are grouped into 4-bit symbols. Each symbol is then
mapped to a pseudo-random noise (PN) sequence of 32 bits, where
each bit of such a sequence is called chip. PN sequences add re-
dundancy, and relate to each other through cyclic shifts and conju-
gation of chips. In a last step, each PN sequence is modulated onto
the carrier signal using O-QPSK with half-sine pulse shaping. That
is, even-indexed chips are modulated onto the in-phase (I) carrier,
odd-indexed chips onto the quadrature-phase (Q) carrier. Q-phase
chips are delayed by Tc = 0.5µs with respect to I-phase chips to
get a π/2 phase change. Overall, a new chip is transmitted every
Tc, leading to a transmission rate of 250 kbps.

Demodulation at a receiver follows the opposite flow: each half-
sine pulse is converted into a chip, and the resulting PN sequence
into a symbol. Radios make only soft decisions for each chip [31]:
the received PN sequence may contain non-binary values between 0
and 1. Hard decisions are made by selecting out of the 16 PN se-
quences the one that has the highest correlation with respect to the
received PN sequence. In this step, the redundancy contained in a
PN sequence increases the chances of a correct symbol detection,
even if some chips are not correctly received.

Next, we show how the IEEE 802.15.4 standard translates into a
maximum temporal displacement ∆max among multiple transmis-
sions to generate constructive interference with high probability.

2.2 Generating Constructive Interference
Several studies [6, 36] estimate the bit error rate (BER) when

receiving delayed replica of the same MSK signal. They show that
the BER increases exponentially with the temporal displacement ∆
among overlapping signals. However, as explained above, sensor
network radios make hard decisions at the symbol level (i.e., on PN
sequences of 32 consecutive chips). The redundancy included in
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Figure 2: IEEE 802.15.4 transmitters interfere constructively
if the temporal displacement is smaller than ∆max = 0.5µs.

each PN sequence helps to tolerate decoding errors of single chips.
Therefore, computing the error on a sequence of symbols provides
a better estimation of the reception behavior of a sensor node.

We perform Matlab simulations to evaluate the maximum tem-
poral displacement between two IEEE 802.15.4-compliant signals
such that they interfere constructively with high probability. A re-
ceiver decodes the superposition of two signals. Each signal is gen-
erated by converting the start of frame delimiter (SFD) symbols
specified by the IEEE 802.15.4 standard, first into a PN sequence
and then into an MSK-modulated baseband signal. Both signals
have the same amplitude, but one of them is delayed by a variable
displacement with 250 ns granularity in the interval [0, 8]µs. White
Gaussian noise is added to the superimposed signal, resulting in a
signal-to-noise ratio of -10 dB.

The receiver demodulates the superimposed signal. It then cor-
relates each PN sequence with all 16 possible PN sequences and
chooses the one with the highest correlation. This procedure re-
sembles the operations of a IEEE 802.15.4 radio during a packet
reception. Only if both SFD symbols are correctly estimated, the
superimposed signal is considered correctly detected.

Fig. 2 shows the fraction of correctly detected signals depending
on the temporal displacement ∆, averaged over 1,000 experiments
with different seeds for the random noise. The signal is always cor-
rectly detected when ∆ = 0. Even for ∆ = 0.25µs the signal is
correctly detected in more than 98 % of the cases. However, the
fraction of correct detections starts to decrease significantly for a
displacement larger than 0.5µs, which corresponds to the chip pe-
riod Tc. Interestingly, for increasing ∆, the fraction experiences
local minima when ∆ is a multiple of 2 · Tc, that is, when dif-
ferent chips perfectly overlap. Between two local minima, the re-
dundancy added by the PN sequences increases the chances for a
correct signal detection, despite errors on single chips. We verify
using various symbol sequences and noise seeds that these results
are independent of the specific symbol sequence of the SFD.

These simulations show that the probability of a correct detec-
tion is very high when identical IEEE 802.15.4 signals are gener-
ated with a time displacement below ∆max = 0.5µs. A correct
detection is entirely due to the modulation scheme and the redun-
dancy encoded in PN sequences. On real nodes, capture effects can
further increase the chances to correctly detect a packet, especially
with high temporal or strength differences between the signals. We
show in the following how the design and the implementation of
Glossy strive to satisfy the requirement of ∆max = 0.5µs, allow-
ing nodes to receive packets even in the absence of beneficial cap-
ture effects (e.g., when many nodes transmit concurrently).

3. GLOSSY OVERVIEW
We introduce Glossy, a new flooding architecture for wireless

sensor networks. Glossy incorporates three main techniques.

Concurrent transmissions. Wireless is a broadcast medium, cre-
ating the opportunity for nodes to overhear packets from neigh-
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Figure 3: Glossy decouples flooding from other application
tasks executing on the nodes. The slot length Tslot is the time
between transmissions of packets with relay counter c and c + 1.
Nodes transmit packets with the same relay counter concurrently.

boring nodes. Using Glossy, nodes turn on their radios, listen for
communications over the wireless medium, and relay overheard
packets immediately after receiving them. Since the neighbors of a
sender receive a packet at the same time, they also start to relay the
packet at the same time. This again triggers other nodes to receive
and relay the packet. In this way, Glossy benefits from concurrent
transmissions by quickly propagating a packet from a source node
(initiator) to all other nodes (receivers) in the network.

An important property of Glossy is that, besides the first trans-
mission of the initiator, the flooding process is entirely driven by ra-
dio events. For instance, a node triggers a transmission only when
the radio signals the completion of a packet reception. As explained
in Sec. 2, concurrent transmissions must be properly aligned to en-
able a receiver to successfully decode the packet. Glossy’s radio-
driven execution is a key factor to meet this requirement.
Time synchronization. Glossy exploits the above flooding mecha-
nism to implicitly time-synchronize the nodes. It embeds into each
packet a 1-byte field, the relay counter c. The initiator sets c = 0
before the first transmission. Nodes increment c by 1 before relay-
ing a packet. Consequently, a node can infer from the relay counter
how many times a received packet has been relayed.

As indicated in the lower part of Fig. 3, we define the time be-
tween the start of a packet transmission with relay counter c and the
start of the following packet transmission with relay counter c+1 as
the slot length Tslot. Nodes locally estimate Tslot using timestamps
taken at the occurrence of radio interrupts. Most importantly, Tslot

is a network-wide constant, since during a flood nodes never alter
the packet length. Based on the relay counter c of a received packet
and the estimate of Tslot, a node computes the time at which the
initiator started the flood, called the reference time. In this way,
all receivers synchronize relatively to the clock of the initiator. To
achieve absolute time synchronization, the initiator embeds its own
clock value into the flooding packet.
Temporal decoupling. A time-synchronized network is useful for
many purposes. Glossy benefits from it by temporally decoupling
network flooding from all other application tasks executing on the
nodes, as depicted in the upper part of Fig. 3. In particular, nodes
know the interval between two Glossy phases (e.g., by embedding
the interval into packets injected by the initiator), which allows
them to synchronously stall other tasks right before a flood and
to resume these tasks immediately afterwards. As a result, Glossy
never interferes with other activities, leading to a highly determin-
istic behavior during a flood. Temporal decoupling is thus another
key factor to make concurrent transmissions precisely overlap.

Moreover, temporal decoupling allows the network to run other
protocols or execute other tasks between two network floods. For
example, an application may use a data collection protocol on top of
a low-power MAC to gather sensory data, while at regular intervals
Glossy takes over to disseminate commands to the nodes (e.g., to
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adjust the sampling rate) and to keep the nodes synchronized. Here,
also the application benefits from temporal decoupling, since flood-
ing packets never interfere with data collection packets. Such pro-
tocol interference could substantially degrade system performance,
especially in terms of data yield [5].

Glossy integrates smoothly with a software system that provides
primitives to decouple tasks over time, such as the slotted program-
ming approach [13]. Duty-cycled networks, where all nodes wake
up at the same time [4], can allocate Glossy at the beginning of the
active phase, or during the sleep phase when no other communica-
tion takes place. Nevertheless, as demonstrated by our experiments
in Sec. 7, Glossy needs only a few milliseconds to complete.

Fig. 4 shows a possible way of integrating Glossy with the rest
of the software system on a node. An application that wishes to
use it instructs the scheduler using scheduleGlossy() to run Glossy
with a certain period. This period can be changed by the applica-
tion at runtime (e.g., upon receiving a new interval from the initia-
tor) by calling the same function again. Depending on the period,
the scheduler starts and stops Glossy, using functions startGlossy()
and stopGlossy() provided by the Glossy interface. Moreover, the
scheduler notifies the application in advance via callback function
glossyStarts() before it starts Glossy, giving the application the op-
portunity to prepare for Glossy taking over. Similarly, the scheduler
notifies the application via callback function glossyFinished() after
Glossy has terminated.

This control flow is the same for both initiator and receiver, but
the data flow is not, as shown in the lower part of Fig. 4. On the ini-
tiator, the application provides Glossy with the data to be flooded.
On the receiver, Glossy passes the received data to the application.
Glossy provides the synchronization data (i.e., the reference time)
to the applications of both, initiator and receiver.

At system startup, when a receiver is not yet synchronized, the
application may instruct the scheduler to run Glossy with a shorter
period in order to quickly overhear a Glossy packet from other
nodes and get synchronized. By adapting the period, sophisticated
mechanisms [9] can be implemented to achieve the desired trade-
off between fast initial synchronization and energy efficiency.

Glossy manages interrupts and timers transparently. It masks
software and hardware interrupts that are not essential to its func-
tioning and disables all hardware timers. Nevertheless, Glossy
records which interrupts have been active and which timers have
been scheduled before its execution. Using this information, Glossy
restores interrupts and timers after it terminates, allowing the appli-
cation and the rest of the system to smoothly continue its execution.

4. GLOSSY IN DETAIL
This section describes the Glossy architecture in detail. We first

illustrate the sequence of operations executed during a flood, fol-
lowed by an analysis of the timing behavior of these operations.

ntx := 0
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Figure 5: States of Glossy during execution. Transitions in the
main state sequence (bold arrows) are triggered by radio events.
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Figure 6: Example of a Glossy flood withN = 2. Nodes always
transmit packets with the same relay counter c concurrently.

4.1 Radio-driven Execution Model
Fig. 5 depicts the core of Glossy, represented by the repetitive

sequence of states Wait→Receive→Transmit. The scheduler
starts Glossy using startGlossy(). Afterwards, a receiver begins the
execution in the Wait state. The initiator, instead, starts from state
Transmit, and transmits a packet with relay counter c = 0. After
this startup phase, the execution is the same for both initiator and
receivers, as described in the following.

In the Wait state, a node has its radio turned on and waits for
a packet being flooded through the network. When the radio indi-
cates the beginning of a reception, the microcontroller unit (MCU)
starts to read the incoming packet. This action corresponds to a
transition to the Receive state. If the reception fails (e.g., due
to packet corruption), the node returns to the Wait state. Other-
wise, if the reception succeeds, the node makes a transition to the
Transmit state. In this case, the MCU immediately issues a trans-
mission request to the radio, increments the relay counter c by 1,
and copies the modified packet from the receive (Rx ) buffer to the
transmit (Tx ) buffer. To introduce only a small and predictable de-
lay, the MCU performs this packet copying after issuing the trans-
mission request, that is, while the radio switches from Rx to Tx
mode. In Sec. 5, we demonstrate the feasibility of this approach
on common sensor node platforms. Some recent radios feature a
single packet buffer [3], making the packet copying step obsolete.

Nodes can transmit a packet multiple times to increase flooding
reliability. We denote withN the maximum number of times a node
transmits during a flood. When a packet transmission ends, a trans-
mission counter ntx is incremented and compared to the maximum
number of transmissions N . If a node has already transmitted N
times, it makes a transition to state Off, turns off the radio, and
Glossy completes. Otherwise, the node returns to the Wait state,
and the sequence starts again at the next packet reception. Ulti-
mately, the scheduler stops Glossy by calling stopGlossy().

Fig. 6 shows an example of a network flood with N = 2. When
Glossy starts, the initiator sets the relay counter c to 0 and transmits
the first time to start the flooding process. Receivers within com-
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Figure 7: Timeline of main Glossy states. The radio determines
the dwell time of each state, except for the time required to trigger
a packet transmission, Tsw, which is determined by the MCU.

munication range of the initiator overhear the packet, set c to 1, and
transmit concurrently. Their neighboring nodes, including the ini-
tiator, overhear this second packet, set c to 2, and again transmit
concurrently. In this way, nodes always transmit packets with the
same relay counter c concurrently. The process repeats until ntx

reaches N at all nodes in the network. In Sec. 7, we further inves-
tigate the impact of N on the performance of Glossy.

All transitions among states in Glossy’s main loop in Fig. 5 are
triggered by radio events. On standard sensor network platforms,
the MCU is typically notified of these events through interrupts.
Therefore, the few software operations required by Glossy are ex-
ecuted within interrupt service routines (ISRs). In Sec. 5, we de-
scribe an implementation of Glossy that limits uncertainties in the
execution time to inaccuracies of the underlying hardware.

4.2 Execution Timing
The dwell time of the main Glossy states depends primarily on

the radio hardware. The MCU influences the timing only after the
completion of a packet reception, and only for the time necessary
to trigger a packet transmission.

Fig. 7 shows the timeline of the main Glossy state sequence. We
see that the timing depends only on the radio, besides a short pe-
riod at the beginning of the Transmit state. We call this period the
software delay Tsw, required by the MCU to trigger a packet trans-
mission. This delay depends primarily on the software routine. In
addition, it is affected by the frequency of the serial peripheral in-
terface (SPI) bus that is used on most sensor node platforms for the
communication between the MCU and the radio.

In Sec. 3, we discussed that a receiver computes the synchroniza-
tion reference time based on the estimate of the slot length Tslot,
defined as the time between the start of two packet transmissions
with relay counter c and c + 1. We now show that Tslot mostly
depends on the radio hardware, which is an important property to
achieve high synchronization accuracy. We analyze in Sec. 6 how
hardware inaccuracies influence the slot length. Tslot accounts for
the software delay Tsw, the time required to transmit a packet Ttx,
and the processing delay Td introduced by the radio at the begin-
ning of a packet reception. Tslot can thus be expressed as:

Tslot = Tsw + Ttx + Td (1)

We provide an analytical expression for the time required to
transmit a packet Ttx. Fig. 7 shows the operations performed by the
radio during a packet transmission. Once the radio receives a trans-
mission request, it starts to calibrate the internal voltage controlled
oscillator (VCO). We denote the hardware-dependent time required
for this calibration with Tcal. A valid IEEE 802.15.4 packet con-
sists of the following fields: (i) the preamble composed of 8 0x0
symbols, (ii) the SFD corresponding to symbols 0x7A, (iii) the
2-symbol frame length field that specifies the number of bytes Lm

contained in the MAC protocol data unit (MPDU), and (iv) the
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Figure 8: Data transfer between the radio buffers and the MCU
in Glossy. Snapshot taken with a logic analyzer during the trans-
mission of a 46-byte packet. Data transfers (FIFO pin) from the
radio’s Rx buffer are denoted in white, to the Tx buffer in gray.

MPDU itself that carries the application data. We denote with Tpr ,
Tf , Tl, and Tm the times required to transmit each of these fields.
The time needed for a packet transmission is thus given by:

Ttx = Tcal + Tpr + Tf + Tl + Tm (2)

Note that in (2) only Tm depends on the packet length. The other
terms are determined by the radio hardware and the standard.

5. IMPLEMENTATION
We implemented Glossy in Contiki [1] based on Tmote Sky sen-

sor nodes, which feature an MSP430 microcontroller [32] and a
CC2420 radio [31] compliant with the IEEE 802.15.4 standard. In
this section we first show how our implementation leads to a highly
deterministic software delay, which is a necessary condition to gen-
erate constructive interference (see Sec. 2). We then outline the ap-
proach we use to achieve high synchronization accuracy. Finally,
we provide guidelines for porting Glossy to different radios.

Software instructions are executed by the MCU, whose clock is
sourced by a digitally controlled oscillator (DCO). The DCO fre-
quency varies with temperature, voltage, and from device to device.
Although digital control allows to stabilize the frequency on a long-
term basis (e.g., using the more stable external 32,768 Hz crystal as
a reference), short-term stability is not guaranteed. The frequency
of the DCO can deviate up to ±20 % from the nominal value, with
temperature and voltage drifts of -0.38 %/◦C and 5 %/V [32]. To
counteract these variations, our Glossy implementation (i) strives
to minimize the number of software instructions, mitigating the im-
pact of DCO instability on the software delay, and (ii) ensures a
constant number of software instructions. Moreover, the DCO runs
independently of the radio clock, leading to varying delays in the
transfer of digital signals between the radio circuit and the MCU.
Therefore, our implementation (iii) compensates for varying off-
sets between the DCO and the radio clock. In the following, we
describe these aspects of our implementation.

5.1 Minimizing Software Delay
We exploit buffered packet receptions and transmissions to min-

imize the number of software instructions. The CC2420 radio pro-
vides two buffers for receiving (Rx ) and transmitting (Tx ), imple-
mented as first-in-first-out queues. During a packet reception, the
radio stores incoming data into the Rx buffer. The FIFO pin signals
the MCU when the Rx buffer contains at least 1 byte. The MCU
never enters a low-power mode while Glossy is running, so that all
of its components are always enabled.

Glossy can flood packets of any IEEE 802.15.4-compliant length.
During a reception, a receiver checks the length of the packet be-
ing flooded by reading the first byte of the packet, correspond-
ing to the packet length field. This action corresponds to step 〈1〉
in Fig. 8, which shows the sequence of data transfers between the



radio buffers and the MCU measured with a logic analyzer. If the
packet length is greater than 8 bytes, Glossy lets the MCU poll the
FIFO pin: the content of the packet is read byte after byte over the
SPI bus and stored into a temporary buffer while the packet is still
being received by the radio 〈2〉. When only 8 bytes are left to re-
ceive, Glossy stops polling the FIFO pin 〈3〉, and waits until the
SFD pin makes a transition to 0 and an interrupt occurs. At this
point, Glossy executes a minimum, constant number of software
instructions just to serve the interrupt and to issue a transmission
request to the radio 〈4〉. Then, while the radio calibrates the VCO,
Glossy reads the last 8 bytes 〈5〉 from the Rx buffer, and checks
whether the packet has been received successfully. If so, Glossy
increments the relay counter c and copies the data from the tempo-
rary buffer into the Tx buffer of the radio 〈6〉, which then trans-
mits the packet; otherwise, Glossy aborts the transmission process
before the radio actually starts sending the preamble. When the
packet length is at most 8 bytes, Glossy skips polling the FIFO
pin (steps 〈2〉 and 〈3〉), and reads the remaining content of the Rx
buffer after the packet reception completes.

This approach is feasible as it takes only a few software instruc-
tions to check whether a packet has been successfully received;
the MCU executes these instructions and starts writing to the Tx
buffer before the radio completes the VCO calibration. For long
packets, the Tx buffer might not be completely filled before the
radio starts transmitting the first bytes from the Tx buffer, as is the
case in Fig. 8. This does not cause a buffer underflow, since the
Tx buffer is a first-in-first-out queue and copying data over the SPI
bus is faster than transmitting it over the wireless medium. In our
implementation, the latency required for writing to the Tx buffer is
5.75µs per byte, plus an initial latency of 18µs; the time required
to transmit a byte with an IEEE 802.15.4-compliant radio is 32µs.

5.2 Making Software Delay Deterministic
A small and constant number of software instructions does not

guarantee that the MCU issues a transmission request to the radio a
constant number of cycles after being notified of the end of a packet
reception. When the MCU receives an interrupt request, it first
completes the execution of the current instruction before starting to
serve the interrupt. Instructions on the MSP430 require between
1 and 6 clock cycles to complete. Interrupts are thus served with
a variable delay, depending on which instruction is being executed
when the MCU receives the interrupt.

Glossy compensates for this variable delay by measuring the
number of clock ticks elapsed between the instant at which the in-
terrupt is received, recorded using the capture functionality of the
MCU at the rising edge of the SFD pin, and the instant at which it is
served. Depending on the measured delay, Glossy inserts a certain
number of no operations (NOPs) at the beginning of the interrupt
handler. Glossy thus ensures that a transmission request to the ra-
dio is issued a constant number of clock cycles after the interrupt
reception, which makes the software delay highly deterministic.

5.3 Compensating for Hardware Variations
The software delay Tsw is the sum of (i) the time required by the

MCU to sample the transition of the radio’s SFD pin at the end of
a packet reception, (ii) the number of MCU clock ticks I needed to
issue a transmission request to the radio, and (iii) the time required
by the radio to sample the transmission request coming from the
MCU. Using the mechanisms described above, we know that I is
constant in our implementation. However, due to the asynchronous
clocks of radio and MCU, the software delay Tsw is still not con-
stant: there is a variable delay in the transfer of digital signals be-
tween these two components.

23.125 23.25 23.375 23.5
0

10

20

30

40

50

Software delay T
sw

  [µs]

F
re

q
u
e
n
c
y
 [
%

]

Figure 9: Distribution of the software delay Tsw. Results from
a logic analyzer show that in 91 % of the cases Tsw matches the
theoretical binary distribution of two values with a distance of one
radio clock tick, corresponding to 125 ns.

The radio updates its digital output signals with frequency fr ,
determined by its crystal oscillator. The internal DCO determines
the frequency fp of the MCU. Neglecting clock drifts, we can write:

Tsw =
1

fr
·
⌈

(I + kp) · fr
fp

⌉
(3)

where kp (0 < kp ≤ 1) is the fraction of the DCO period 1/fp
required at the MCU to sample the SFD transition at the end of the
packet reception. Given that the radio clock and the DCO run com-
pletely unsynchronized, the initial offset kp is a continuous random
variable uniformly distributed in the interval 0 < kp ≤ 1. This im-
plies that Tsw is a discrete random variable with granularity 1/fr .
The number of possible discrete values for Tsw and their distribu-
tion depend on the number of DCO ticks I .

By inserting a constant number of NOPs, we choose I in our im-
plementation so that we obtain from (3) a distribution that achieves
the theoretical lower bound of only two possible values for Tsw.
These two values are 1/fr apart—as long as radio and MCU use
two independent clocks, any implementation of Glossy exhibits a
minimum jitter of 1/fr in the software delay. For example, on the
Tmote Sky, the CC2420 radio updates its digital output signals with
frequency fr = 8 MHz, and the DCO of the MSP430 runs in our
implementation at a frequency fp = 4, 194, 304 Hz. The resulting
difference between the two possible values of Tsw is 125 ns.

We measured the software delay of our implementation by con-
necting the radio SFD pin of four Tmote Sky nodes to a logic
analyzer. These four nodes act as receivers, while an additional
node periodically initiates a flood. Upon overhearing a packet from
the initiator, the receivers trigger a transmission, and we measure
the distance between the end of a reception and the beginning of a
transmission. This corresponds to Tsw + Tcal + Tpr + Tf .

Fig. 9 shows the distribution of the software delay, computed
by removing the constant Tcal + Tpr + Tf = 352µs. We see
that in 91 % of the cases the delay matches the theoretical binary
distribution according to (3). Moreover, the values are equally dis-
tributed between the two possible values, 23.25µs and 23.375µs,
for I = 97 in our implementation. In the remaining 9 % of the
cases, an additional uncertainty of one radio clock tick affects the
delay. However, this is mainly due to the drift of the DCO that may
generate a frequency different from the nominal value fp. In fact,
it appears very difficult to avoid such negative drift effects, given
that our implementation synchronizes the DCO with respect to the
stable 32,768 Hz crystal every time Glossy starts, and the number
of instructions is (at least very close to) the minimum.

5.4 Time Synchronization
Glossy provides implicit time synchronization. Receivers com-

pute a common reference time based on the relay counter c re-
ceived during the flood and the estimated slot length Tslot. On a
Tmote Sky sensor node, the MSP430 can use two separate time
sources: the internal high-frequency DCO and an external low-



frequency crystal. This 32 kHz external crystal is significantly more
stable than the internal DCO but provides time with low resolu-
tion. By contrast, the DCO provides sub-microsecond resolution,
but does not guarantee short-term stability, and is usually disabled
when the MCU enters a low-power execution mode.

We exploit the Virtual High-resolution Time (VHT) approach
by Schmid et al. [27] to achieve high-resolution and low-power
time synchronization. The DCO is enabled at the beginning of a
Glossy phase, and the MCU does not enter a low-power mode un-
til Glossy terminates its execution. The MCU timestamps with the
high-frequency clock all the interrupts generated by transitions of
the SFD pin. As a result, receivers compute high-resolution esti-
mates of Tslot. The timer capture functionality of the MSP430 is
then exploited to translate the high-resolution estimate of the ref-
erence time to a low-resolution value and a relative high-resolution
offset. These two time values are provided to the application.

When the application schedules synchronized actions, it only
needs to turn on the internal DCO and do a reverse translation
to a high-resolution time value. As a result, events can be sched-
uled with high resolution and with an energy cost proportional to
the number of timer accesses. Receivers can also exploit estimates
of Tslot to compute the drift of the low-frequency clock. As dis-
cussed in Sec. 4.2, Tslot depends to a great extent on the radio
clock, sourced by a high-frequency and stable crystal. Accurate
synchronization between two Glossy phases can be maintained by
compensating for the measured drift. We show in Sec. 7 that our
synchronization implementation accurately estimates the reference
time with an average error smaller than one microsecond.

5.5 Porting Glossy to Other Radios
Glossy can be ported to IEEE 802.15.4-compliant radios other

than the CC2420. Destructive interference due to path delay dif-
ferences is not a major problem in current low-power wireless net-
works, where links are rarely longer than a few tens of meters [10].
With long-range radios, the requirement for constructive interfer-
ence ∆max = 0.5µs corresponds to a maximum difference in path
delay of 150 meters. However, if transmission power control is not
used, such big differences in path delay would also result in big
differences in received signal strength, making a correct reception
of the first (stronger) packet very likely due to capture effects.

Radios like the AT86RF230 [3] feature a RAM for packet buffer-
ing. It is thus possible to change the value of certain bytes (e.g., the
relay counter) in-situ, that is, without the need to transfer the entire
packet twice over the SPI bus between a reception and a transmis-
sion. Compared to our Tmote Sky implementation, this feature
eases the effort for minimizing the software delay. Moreover, the
software delay is completely eliminated in radios supporting auto-
matic switch to transmission mode at the end of a packet reception.

6. THEORETICAL ANALYSIS
This section studies Glossy analytically. In particular, we look at

the probability that Glossy makes concurrent transmissions of the
same packet interfere constructively, which depends on the tempo-
ral displacement ∆ among the transmissions (see Sec. 2). We want
to analyze how ∆ is affected by the number of concurrent transmit-
ters (i.e., node density) and the maximum hop distance of a receiver
from the initiator (i.e., network size). In addition, we want to study
the limits of Glossy in a worst-case setting that is extremely diffi-
cult to reproduce with real sensor nodes.

To this end, we consider the network structure in Fig. 10(a).
There are m ≥ 2 independent flooding paths originating at the
initiator. These paths traverse h ≥ 2 hops each, and join again at a
common receiver. In this way, we construct a worst-case scenario in

the sense that the initiator provides the only common synchroniza-
tion point to the paths: nodes on one path relay the flooding packet
independently of nodes on the other paths, which challenges Glossy
in making the final m concurrent transmissions interfere construc-
tively at the common receiver.

We first present a theoretical model of the temporal displace-
ment ∆ experienced by the common receiver, independent of a spe-
cific implementation or node platform. Then, we apply this model
to our implementation of Glossy on Tmote Sky devices. The results
show that Glossy generates constructive interference with a proba-
bility above 99.9 % even when 30 nodes transmit concurrently.

6.1 Implementation-independent Analysis
We first analyze the sources of temporal uncertainty affecting

the slot length Tslot given by (1). Our analysis makes use of a mix-
ture of statistical and worst-case assumptions. We consider statisti-
cal distributions for processes that are clearly stochastic in nature,
such as the offset between two unsynchronized clocks. We instead
consider worst-case scenarios for more deterministic variables, in-
cluding clock drift, network topology, and the maximum temporal
displacement among transmitters. Hence, our model provides the
statistical worst-case displacement ∆ experienced by the common
receiver as a function of m and h.

6.1.1 Statistical Uncertainty on Slot Length
We discussed in Sec. 5 that the delay Tsw introduced by the soft-

ware routine to trigger a transmission is in general not constant,
even if the number of instructions I executed by the MCU is fixed.
The software delay Tsw is a multiple of the period 1/fr of the crys-
tal sourcing the radio clock. We can thus express the software delay
as Tsw = T̃sw + τsw, where T̃sw is a constant value corresponding
to the minimum possible delay, and τsw is a discrete random vari-
able with granularity 1/fr representing the additional variation due
to the unsynchronized clocks of the MCU and the radio. We denote
with psw the probability mass function (pmf) of τsw.

The processing delay of the radio, Td, is also not constant. The
digital circuits of the radio are sourced by a crystal oscillator that
has frequency fr . The radio starts to process an incoming packet
when the digital circuits sampled the beginning of a reception, at
most after 1/fr . We express the processing delay of the radio as
Td = T̃d + τd. The time needed to process an incoming packet, T̃d,
is a constant usually in the order of a few microseconds and deter-
mined by the radio. The time required to sample a reception, τd,
depends on the offset between the radio clocks of the transmitter
and the receiver. Since these clocks run unsynchronized, τd is a
random variable with uniform distribution in the interval [0, 1/fr].
We discretize the set of values of τd by introducing a time granular-
ity δ such that δ = 1/(k · fr), k � 1. Consequently, τd has uni-
form discrete distribution τd = {0, δ, 2 · δ, . . . , 1/fr} and pmf pd
with constant values 1/(k + 1).

The statistical uncertainty on the length of a slot is the sum of
the uncertainties on the software delay and the radio processing:

τslot = τsw + τd (4)

Since δ � 1/fr , τslot has granularity δ. The two uncertainties,
τsw and τd, are independent, because they are due to independent
effects. Recalling that the distribution of the sum of two indepen-
dent random variables can be expressed by their convolution, the
uncertainty on the length of a slot has pmf pslot = psw ∗ pd.

6.1.2 Worst-Case Drift of Radio Clock
The time required for a packet transmission, Ttx, is given by (2)

and depends on the frequency of the radio clock fr . In general,
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Figure 10: Scenario and results of the theoretical analysis. In our Glossy implementation, the statistical worst-case temporal displacement
among all transmitters, ∆, is smaller than 0.5µs with different network settings. Results are provided for N = 3.

this frequency deviates from the nominal value f̃r due to tempera-
ture and aging effects. Crystals used to source the clocks of sensor
network radios have a frequency drift ρ that depends on the tem-
perature t according to a third-order polynomial [26]:

ρ = (fr − f̃r)/f̃r = A(t− t0)3 +B(t− t0) + C (5)

Here, A, B, C, and t0 are constants that depend on the specific
crystal device. Using (5), it is possible to determine bounds on the
frequency drift for a given temperature range.

In the following, we assume −ρ̂ ≤ ρ ≤ ρ̂. In the worst case,
among the m independent paths in Fig. 10(a), there is at least one
path where all radio clocks run at the highest frequency f̃r(1 + ρ̂),
and at least one other path where all radio clocks run at the lowest
frequency f̃r(1− ρ̂). We denote with T̃tx the nominal transmission
time in the absence of radio clock drift. With this, we can express
the worst-case variation on the transmission time that accumulates
after h hops at the end of these two independent paths as follows:

τtx = (h− 1) · 2 · ρ̂
1− ρ̂2 · T̃tx (6)

6.1.3 Statistical Worst-case Temporal Displacement
Each node introduces a statistical uncertainty τslot on the length

of a slot. This uncertainty is independent of other nodes, since
the pair of radio and MCU clocks on one node runs independently
from the pair of clocks on other nodes. Therefore, the temporal
uncertainty τ associated with a path that consists of h hops is the
sum of h−1 independent random variables τ = (h−1) ·τslot. The
pmf of τ is given by the convolution of h− 1 instances of pslot.

We now extend the problem to m independent paths, each con-
sisting of h hops and originating at the initiator. We are interested in
the statistical worst-case temporal displacement ∆. This displace-
ment corresponds to the difference between the maximum and the
minimum timing variation associated with each path. We consider
a worst-case scenario where the path with the minimum time varia-
tion has clocks running at the highest frequency, and the path with
the maximum variation has clocks running at the lowest frequency:

∆ = max
m

[τ ]−min
m

[τ ] + τtx (7)

Based on (7), we want to determine the cumulative distribution
function (cdf) of ∆. This corresponds to the problem of find-
ing the cdf of the sample range of m independent identically dis-
tributed (i.i.d.) experiments. This is a well-known order statistics
problem, and analytical solutions exist in the literature [2].

6.2 Implementation-dependent Analysis
We now apply the above model to our Glossy implementation on

Tmote Sky devices. We analyze the statistical worst-case temporal

displacement ∆ for different node densities and network sizes. We
use the measurements shown in Fig. 9 to obtain the pmf of the
software delay Tsw. In addition, we consider ρ̂ = 20 ppm as the
maximum drift affecting the radio crystal, which corresponds to a
temperature range between -30°C and 50°C [26].

To analyze the dependency on network size, we fix the number
of paths atm = 2 and vary the path length h between 2 and 8 hops.
Fig. 10(b) plots the cdf of ∆ for four different settings. We see that
∆ is smaller than the requirement of 0.5µs with very high proba-
bility. This shows that when a flooding packet is relayed along two
independent paths over 8 hops, the two final concurrent transmis-
sions generate constructive interference in more than 96 % of the
cases. Recall that this assumes that the time variation due to radio
clock drift is maximum between the two paths. However, in reality,
the drift is usually much smaller than its bounds, which increases
the probability of constructive interference significantly.

To analyze the dependency on node density, we set the path
length to h = 2 and vary the number of paths m between 2 and 30.
Fig. 10(c) shows that our Glossy implementation is robust also in
very dense networks. In fact, when 30 nodes transmit concurrently
to a common receiver, ∆ is smaller than 0.5µs with a probability
above 99.9 %. We show in Sec. 7 that experimental results from
high-density networks confirm these analytical results.

6.3 Theoretical Lower Latency Bound
We provide an expression for the theoretical lower bound on

flooding latency. Intuitively, this bound is given by adding up the
hardware-dependent times for transmitting Ttx and radio process-
ing Td. Given that nodes transmit concurrently, the theoretical
lower latency bound in a network with size h hops is h ·(Ttx +Td).

At each hop, Glossy adds a delay Tsw to the theoretical lower
bound. This delay is introduced by the MCU when issuing a trans-
mission request to the radio. In our implementation, Tsw is at most
23.5µs (see Fig. 9). We are not aware of any flooding protocol that
comes so close to the theoretical lower latency bound.

7. EXPERIMENTAL EVALUATION
This section evaluates Glossy on real sensor nodes. We first

present results from experiments with a few nodes in several con-
trolled settings. Afterwards, we report on the performance of Glossy
during extensive experiments on three wireless sensor testbeds.

7.1 Glossy in Controlled Experiments
Before evaluating Glossy on several testbeds, we use controlled

experiments to study some of its basic characteristics. We start
by looking at the reliability of concurrent transmissions, defined
as the fraction of packets correctly received by a node. We analyze
how reliability is affected by the temporal displacement ∆ between
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Figure 11: Glossy in a scenario without capture effects, for
N = 1. Reliability is 95 % due to constructive interference when
the temporal displacement ∆ is zero. Reliability drops significantly
as ∆ exceeds 0.5µs, and follows the same pattern as in Fig. 2.

two transmitters and by the total number of concurrent transmitters.
Afterwards, we look at the time synchronization error, which we
define as the absolute error on the reference time computed by a
receiver with respect to the initiator.

We find that (i) Glossy provides a reliability above 95 % in a
scenario where the capture effect does not occur; (ii) while varying
the number of concurrent transmitters between 2 and 10, reliability
stays fairly constant and always above 98 %; (iii) Glossy achieves
an average time synchronization error of less than 0.4µs even at
receivers that are eight hops away from the initiator.

7.1.1 Impact of Temporal Displacement
The first experiment evaluates the reliability of Glossy in a sce-

nario where the capture effect does not occur. In this case, a suc-
cessful reception is only possible if concurrent transmissions inter-
fere constructively. While this is clearly a worst-case scenario that
is difficult to reproduce even under controlled settings, it neverthe-
less gives an indication of Glossy’s robustness.

Setup. We use three nodes, one initiator and two receivers, and
set N = 1. Upon receiving a packet from the initiator, the two
receivers transmit concurrently. The initiator overhears these trans-
missions and records whether it can successfully decode the packet.
Based on sequence numbers embedded in the packets, we measure
the reliability experienced by the initiator. Moreover, we delay the
transmission of one receiver by a variable amount of time in the
interval [0, 8]µs by letting the receiver execute a certain number
of NOPs before issuing a transmission request to the radio. We
set the clock frequency of the MCU to 4 MHz to obtain a temporal
displacement ∆ with 250 ns granularity between the two receivers,
corresponding to half-chip period Tc/2 of the modulated signal.

To ensure that the capture effect does not help the initiator in re-
ceiving the packet, we adjust the transmit powers of the receivers.
In particular, we let the non-delayed receiver transmit at -20 dBm,
and the delayed receiver at -13 dBm. In this way, since both sig-
nals are weak and the second one is stronger than the first one, we
prevent the initiator from capturing the first of the two signals.
Results. Fig. 11 shows reliability for different temporal displace-
ments ∆ and packet lengths, averaged over 2,000 packets for each
setting. We see that the leftmost bar, corresponding to Glossy with-
out artificial delay, indicates a reliability above 95 % for short pack-
ets. This demonstrates that Glossy makes concurrent transmissions
interfere constructively, allowing a receiver to decode a packet with
very high probability even in the absence of the capture effect. For
increasing ∆ we see a pattern similar to the one in Fig. 2 obtained
through simulation. In particular, reliability starts to drop signif-
icantly at ∆max = 0.5µs, showing local minima when different
chips perfectly overlap. Finally, similar to non-concurrent trans-
missions [25], reliability decreases as packets become longer.
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Figure 12: Reliability depending on number of concurrent
transmitters, including capture effects, for N = 1. Reliability
is fairly constant and always above 98 %, thus showing no signifi-
cant dependency on the number of concurrent transmitters.
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Figure 13: Accuracy of time synchronization in Glossy. The ab-
solute error on the reference time computed by a receiver is below
0.4µs, even at receivers that are 8 hops apart from the initiator.

7.1.2 Impact of Number of Concurrent Transmitters
In a typical deployment, nodes are not evenly distributed and ex-

perience different channel characteristics. As a result, some nodes
have more neighbors than others. We therefore study in this exper-
iment the impact of the number of transmitters on reliability.
Setup. We use a setup similar to the one above. However, we vary
the number of receivers between 2 and 10, and do not delay their
transmissions artificially; all packets are 8 bytes long. In this way,
we measure the reliability experienced by the initiator for different
numbers of concurrent transmitters, including capture effects.
Results. Fig. 12 shows reliability, averaged over 10,000 packets for
each setting. We see that reliability stays fairly constant and always
above 98 % as the number of transmitters increases, thus showing
no significant dependency between the two. Interestingly, reliabil-
ity is slightly lower when only two or three nodes transmit concur-
rently. In these settings it is more likely that the initiator receives a
weak signal, due to the generation of carriers with slightly different
frequencies or different phases. Our results resemble those in [11],
where nodes transmit fixed-length acknowledgment packets auto-
matically generated by the radio hardware. By contrast, Glossy
transmits variable-length packets generated in software, achieving
even higher reliability in some cases.

7.1.3 Accuracy of Time Synchronization
Glossy provides network-wide time synchronization at no addi-

tional cost. To this end, a receiver computes a reference time when
receiving the first flooding packet, as detailed in Sec. 5.4. We as-
sess the accuracy of this computation by looking at the absolute
error with respect to the reference time computed by the initiator.

Setup. We use five nodes, one initiator and four receivers. At the
beginning of a Glossy phase, the initiator sends a packet, computes
a reference time, and schedules the next phase based on this ref-
erence time. The receivers do exactly the same. After receiving
the packet from the initiator, they compute reference times, and use
these to schedule the beginning of the next phase.



N = 1 N = 2 N = 3 N = 6

Testbed Tx power Size L R T L R T L R T L R T
[dBm] [hops] [ms] [%] [ms] [ms] [%] [ms] [ms] [%] [ms] [ms] [%] [ms]

MoteLab
(94 nodes)

0 5 1.77 99.37 3.13 1.79 99.88 4.75 1.79 99.96 6.30 1.79 > 99.99 10.87
-7 8 2.28 94.80 4.85 2.35 99.09 5.14 2.37 99.78 6.31 2.39 99.98 10.18

Twist
(92 nodes)

0 3 0.81 99.90 1.99 0.81 > 99.99 3.37 0.81 > 99.99 4.76 0.81 > 99.99 9.07
-15 3 1.18 99.83 2.39 1.18 99.99 3.81 1.18 > 99.99 5.25 1.18 > 99.99 9.60
-25 5 1.74 99.64 3.04 1.75 99.97 4.56 1.75 > 99.99 6.14 1.75 > 99.99 10.84

Local
(39 nodes)

0 3 1.06 99.71 2.31 1.07 99.97 3.76 1.07 > 99.99 5.20 1.07 > 99.99 9.52
-15 7 1.81 98.25 3.45 1.83 99.91 4.75 1.83 99.99 6.26 1.83 > 99.99 10.79

Table 1: Testbed configurations and results. Tx power is the transmit power of all nodes in a testbed, and size is the corresponding
maximum hop distance between initiator and receivers. We show network-wide averages of flooding latency L, flooding reliability R, and
radio on-time T across four different choices of N , which is the maximum number of transmissions per node during a network flood.

All nodes activate an external pin when a phase starts. We con-
nect the respective pin of the five nodes to an oscilloscope, moni-
toring the start of a phase at a granularity of 2 ns. Then we measure
the time difference between pin activation at the initiator and pin
activation at the receivers. In this way, we obtain four estimates of
the time synchronization error. To analyze this error for receivers
that are more than one hop away from the initiator, we choose a suf-
ficiently large N and let the receivers compute the reference time
based on packets received in later slots.

Results. Fig. 13 shows average and standard deviation of the time
synchronization error depending on hop distance from the initiator,
averaged over 4,000 measurements for each setting. We see that
the average error increases slightly up to hop 3, but then remains as
low as 0.4µs up to hop 8. The standard deviation increases almost
linearly with hop distance, reaching 4.8µs at hop 8.

These results show that Glossy achieves accurate time synchro-
nization also at receivers that are several hops away from the initia-
tor. Moreover, they confirm a major result of our theoretical anal-
ysis in Sec. 6, namely that Glossy accumulates only a very small
timing error at each slot. Most of the error is indeed of a stochastic
nature, independent across nodes and different floods.

7.2 Glossy in Testbed Experiments
Using experiments on three wireless sensor testbeds, we evaluate

Glossy’s performance across several node densities, network sizes,
packet lengths, and transmit powers. The results demonstrate that
Glossy provides robust and efficient network flooding under diverse
conditions. We first describe the testbeds and metrics we use. Then
we summarize our key findings, followed by a detailed discussion
of the experimental results.

7.2.1 Scenario and Metrics
We use three different testbeds to evaluate Glossy: MoteLab [34],

Twist [14], and a local one. These differ along several dimen-
sions, including number of nodes, node density, and network size.
On MoteLab, we collect data from 94 nodes unevenly spread over
three floors. A node at the corner of the second floor acts as ini-
tiator. It reaches all other nodes within at most 5 hops when nodes
transmit at the highest power setting of 0 dBm. When transmitting
at -7 dBm, the lowest power that keeps the network fully connected,
the farthest nodes are 8 hops away from the initiator. On Twist, we
use 92 nodes and randomly choose one of them as initiator. Due to
high node density, the network stays connected even at a transmit
power of -25 dBm, yielding a maximum hop distance of 5 from the
initiator. Our local testbed consists of 39 nodes distributed in sev-
eral offices, passages, and storerooms; two nodes are located out-
side on the rooftop. The initiator reaches all nodes within 7 hops
at the lowest possible transmit power of -15 dBm. On all three

testbeds, we use channel 26 to limit the interference with co-located
WiFi networks. The first section in Table 1 lists number of nodes,
transmit powers, and network sizes of each testbed we use.

Our evaluation is based on the following three metrics: (i) flood-
ing latencyL of a receiver is the time between the first transmission
at the initiator and the first successful reception at that receiver;
(ii) flooding reliability R is the fraction of network floods in which
a receiver successfully receives the packet; (iii) radio on-time T is
the time a receiver has its radio turned on during a network flood.
We compute these metrics for a particular setting based on 50,000
network floods. We report L, R, and T for each receiver individu-
ally as well as averaged over all receivers in a testbed.

7.2.2 Summary of Testbed Results
Table 1 summarizes the results collected on the three testbeds.

It lists network-wide averages of L, R, and T across four choices
of N . Our experiments reveal the following key findings:
• The empirical performance of Glossy exhibits no noticeable de-

pendency on node density. Theoretically, performance and node
density are not independent. The analysis in Sec. 6 shows that the
probability of constructive interference is 99.9 % when adding
30 concurrent transmitters. However, we do not discern this
marginal difference in our results from controlled experiments
with up to 10 transmitters (see Sec. 7.1.2) and experiments on
three testbeds, including Twist where nodes are densely deployed.
• The performance of Glossy depends on network size, that is,

on the maximum hop distance between initiator and receivers.
Flooding latency L and radio on-time T increase linearly, and
flooding reliability R decreases logarithmically, as the network
size increases. Nevertheless, for the largest size of 8 hops on
MoteLab with N = 6, L averages around 2.4 ms, R is above
99.9 %, and T is as low as 10.2 ms.
• Increasing the maximum number of transmissionsN significantly

enhances flooding reliability. ForN = 3, we observe thatR is at
least 99.9 % across all testbeds and transmit powers except one.
Since R is already very high for N = 1, further increasing N
has no noticeable effect on the average flooding latency. Radio
on-time increases linearly with N , averaging around 16 ms for
the highest value of N = 10 in our experiments.
In the following, we report results from Twist based on network

floods with an 8-byte packet. This packet length is sufficient to send
short commands to the nodes (e.g., to set system parameters). We
also run experiments with longer packets on MoteLab to see how
the packet length affects the performance of Glossy. We find that
flooding reliability decreases logarithmically as the packet length
increases; for example, R is 99.26 % for N = 3 when nodes trans-
mit 128-byte packets at the highest power (see Table 1). This is
expected as current radios make decisions about the correctness of
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Figure 14: cdf of Glossy performance on Twist with three different transmit powers, forN = 3.

each individual symbol—a packet is only accepted if all symbols
are correctly received. Flooding latency and radio on-time increase
linearly with packet length since transmissions and receptions take
longer, as described in Sec. 4.2. Overall, the results indicate that
Glossy is suitable for applications that need to flood long packets.

7.2.3 Impact of Network Characteristics
We start by looking at the performance of Glossy under different

network characteristics. To this end, we run experiments with three
different transmit powers on Twist (see Table 1). In doing so, we
effectively control the average node density in the network and the
network size. We keep N = 3 fixed across all runs.

Fig. 14 plots the cdfs of R, L, and T for different transmit pow-
ers. We see from Fig. 14(a) that Glossy needs less than 3 ms to flood
a packet to all 91 receivers, even at the lowest power that merely
keeps the network connected. We are not aware of any current
protocol that provides such fast flooding. We comment on related
flooding and dissemination protocols in Sec. 8.

Looking at Fig. 14(b), we find that all receivers have a flood-
ing reliability above 99.99 % at the highest power setting (i.e., at
the highest node density). At the lowest power, still 80 % of the
receivers experience such high reliability. The drop in R is due
to an increased network size. In fact, it takes 5 hops instead of
3 to reach the farthest receivers at the lowest power. This is also
reflected in the step-wise shape of the cdf: each step corresponds
to the flooding reliability experienced by receivers at a certain hop
distance from the initiator. This observation confirms also that R
exhibits no noticeable dependency on node density, as hinted by
our controlled experiments in Sec. 7.1.2.

Finally, Fig. 14(c) plots the radio on-time. We see that receivers
listen longer as their hop distance from the initiator increases. Nev-
ertheless, Glossy achieves ultra-low duty cycles also for larger net-
work sizes. For example, consider an application that wants to use
Glossy to (potentially) flood a command every minute. Then, on
Twist, Glossy would utilize not more than 0.01 % of a node’s aver-
age radio duty cycle. We measure comparably low duty cycles on
MoteLab with a maximum distance of 8 hops from the initiator.

7.2.4 Impact of Maximum Number of Transmissions
Next, we analyze how the performance is affected by N , the

maximum number of transmissions per node during a network flood.
We run experiments on Twist and vary N between 1 and 10. To
stress Glossy as much as possible, we use the lowest possible trans-
mit power of -25 dBm, resulting in a network size of 5 hops.

Figs. 15 and 16 plot R, L, and T for different N . Bars show
network-wide averages; error bars indicate the standard deviation.
Flooding reliability, shown in Fig. 15, increases almost logarith-
mically with N . Starting from N = 3, R consistently exceeds
99.99 %. In fact, we performed 50,000 floods with N = 10, and
only in 3 cases one of the 91 receivers missed the packet.

Flooding latency, shown in Fig. 16, averages around 1.75 ms for
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Figure 15: Flooding reliability for variousN on Twist. The av-
erage flooding reliability increases almost logarithmically with N .
Within 50,000 network floods for N = 10, only in 3 cases one of
the 91 receivers missed the packet.
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Figure 16: Flooding latency and radio on-time for various N
on Twist. Radio on-time increases linearly withN , while the aver-
age flooding latency keeps almost constant.

all values of N . It is largely independent of N due to the high
probability of correctly receiving a packet already at the first at-
tempt. Given the slot length Tslot and the relay counter c, we can
compute the flooding latency of a receiver usingL = (c+1)·Tslot,
assuming perfect reliability.

Finally, by looking at Fig. 16, we see that the radio on-time in-
creases linearly with N . This is also reflected in the corresponding
analytical expression T = Tw + 2N · Tslot, where Tw is the time
a receiver listens before the first transmission it overhears. The
longest radio on-time averages around 16 ms for N = 10.

8. RELATED WORK
Using Glossy, nodes transmit the same packet concurrently. This

idea stems from work on cooperative communication schemes [28].
However, requirements such as precise time synchronization among
multiple transmitters have long been considered too demanding for
an implementation on real sensor nodes [30].

Flury and Wattenhofer demonstrate the feasibility of signaling
a binary value to all nodes with an unmodulated wave [13]. Con-
structive interference provides the opportunity to extend this to real
data packets. Dutta et al. propose Backcast as an acknowledged
anycast service [11]. Backcast exploits constructive interference of
short acknowledgment packets automatically generated by the ra-
dio hardware. It does not require synchronization among the nodes,
but the application has very limited control over the content of the



interfering packets. In a recent work [10], Backcast serves as the
basis for A-MAC, a receiver-initiated link layer protocol. More-
over, interference has been exploited to increase the throughput of
wireless networks (e.g., through analog network coding [16]).

Flash [21] uses concurrent transmissions for rapid flooding in
sensor networks. Flash relies exclusively on capture effects, which
considerably reduces the chances of correct packet reception when
many nodes transmit concurrently [21]. Glossy also benefits from
capture effects but primarily exploits constructive interference. This
enables Glossy to flood packets with high reliability at any node
density, as demonstrated by our testbed experiments in Sec. 7.2.

Glossy and Flash do not require nodes to maintain information
about the network topology. By contrast, in the Robust Broadcast
Protocol (RBP) [29] and the Collective Flooding (CF) [38] nodes
need to continuously collect information about their local neigh-
borhood to identify links important for the broadcast propagation.

Trickle [19] and its variants provide data dissemination: nodes
continuously send advertisements to detect new data and ensure
complete network coverage. Typically, dissemination protocols are
optimized for reliability and data consistency, not for latency or
energy. Glossy floods packets fast without additional control traffic,
while sacrificing less than 0.01 % in flooding reliability.

Flooding is a basic communication primitive for time synchro-
nization in sensor networks. For example, the Flooding Time Syn-
chronization Protocol (FTSP) [22] uses periodic flooding of time-
stamped messages and achieves a per-hop synchronization error in
the microsecond range. Lenzen et al. show that optimal synchro-
nization necessitates fast network flooding [18]. Their PulseSync
protocol achieves a higher accuracy than FTSP and a flooding la-
tency below one second. Glossy provides even higher accuracy by
flooding packets within a few milliseconds and employing the Vir-
tual High-resolution Time (VHT) approach by Schmid et al. [27].
The high accuracy and low energy of VHT are also due to the use
of a custom external high-speed crystal [27]. Glossy could enable
further improvements in synchronization accuracy by combining it
with such crystals.

9. CONCLUSIONS
This paper is motivated by real-world sensor network systems

that rely on fast network flooding and accurate time synchroniza-
tion. We observe that such systems would significantly benefit from
a service that integrates both functionalities in an efficient man-
ner. This paper thus proposes Glossy, a novel flooding architecture
for wireless sensor networks that uses interference to its advantage.
By making simultaneous transmissions of the same packet interfere
constructively, Glossy enables receivers to decode a packet even in
the absence of capture effects. We have analyzed the robustness
of our techniques in achieving constructive interference based on
a mixture of stochastic and worst-case models. We have evalu-
ated our implementation of Glossy using experiments under con-
trolled settings and on three wireless sensor testbeds. The results
demonstrate that Glossy provides accurate time synchronization
along with fast and highly reliable flooding at ultra-low duty cycles,
showing no noticeable dependency on node density in the scenar-
ios considered. The source code of Glossy is publicly available at
http://www.tik.ee.ethz.ch/~ferrarif/sw/glossy.
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