
UC Santa Cruz
Journal of Systems Research

Title
[Tool] Designing Replicable Networking Experiments With Triscale

Permalink
https://escholarship.org/uc/item/63n4s9w2

Journal
Journal of Systems Research, 1(1)

ISSN
2770-5501

Authors
Jacob, Romain
Zimmerling, Marco
Boano, Carlo Alberto
et al.

Publication Date
2021

Copyright Information
Copyright 2021 by the author(s).This work is made available under the terms of a Creative
Commons Attribution-NonCommercial License, available at
https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/63n4s9w2
https://escholarship.org/uc/item/63n4s9w2#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

Journal of Systems Research (JSys) Volume 1, Issue 1, Nov 2021

[TOOL] DESIGNING REPLICABLE NETWORKING EXPERIMENTS

WITH TRISCALE

ROMAIN JACOB

ETH Zurich

jacobr@ethz.ch

MARCO ZIMMERLING

TU Dresden

marco.zimmerling@tu-dresden.de

CARLO ALBERTO BOANO

TU Graz

cboano@tugraz.at

LAURENT VANBEVER

ETH Zurich

lvanbever@ethz.ch

LOTHAR THIELE

ETH Zurich

thiele@ethz.ch

Foreword by the Area Chair

Many research fields are facing an ongoing reproducibility crisis. Networking and systems are no exception. While there

are efforts towards open networking testbeds and datasets, this paper sheds light on another pressing issue that hinders

reproducibility—lack of statistical foundation in the evaluation of many networking papers. Questions such as “how many runs

should the experiments perform” and “how long for each run” are crucial, especially under high performance variability inherent

to networked systems. All reviewers remark on the contribution of the paper: a first step towards a concrete methodology for

networking performance evaluation that offers quantifiable confidence and reproducibility, through synthesizing formal statistical

frameworks and networking domain-specific concepts.

- Junchen Jiang, University of Chicago

Reviewers

- Sangeetha Abdu Jyothi, University of California, Irvine

- Arpit Gupta, University of California, Santa Barbara

- Francis Y. Yan, Microsoft Research

- Xiao Zhu, University of Michigan

Artifacts

The artifact associated with this paper is an implementation of Triscale. The artifact was independently evaluated

by the Artifact Evaluation Board (AEB) led by Eric Eide. The AEB determined that the artifact was usable by a

third party and that it could be used to reproduce the main results presented in the paper. The artifact is available at

https://github.com/romain-jacob/triscale.

Reviews

Anonymized reviews are publicly available at: https://openreview.net/forum?id=c1LNi8CTPy6

Copyright and License

Licensed under Creative Common License CC-BY-NC. Copyright retained by the authors.

https://orcid.org/0000-0002-2218-5750
https://orcid.org/0000-0003-1450-2506
https://orcid.org/0000-0001-7647-3734
https://orcid.org/0000-0003-1455-4381
https://orcid.org/0000-0001-6139-868X
https://escholarship.org/uc/jsys/aeb
https://github.com/romain-jacob/triscale
https://openreview.net/forum?id=c1LNi8CTPy6
https://creativecommons.org/licenses/by-nc/4.0/

DESIGNING REPLICABLE NETWORKING EXPERIMENTS WITH TriScale

Romain Jacob

ETH Zurich

jacobr@ethz.ch

Marco Zimmerling

TU Dresden

marco.zimmerling@tu-dresden.de

Carlo Alberto Boano

TU Graz

cboano@tugraz.at

Laurent Vanbever

ETH Zurich

lvanbever@ethz.ch

Lothar Thiele

ETH Zurich

thiele@ethz.ch

Abstract

When designing their performance evaluations, network-

ing researchers often encounter questions such as: How long

should a run be? How many runs to perform? How to ac-

count for the variability across multiple runs? What statistical

methods should be used to analyze the data? Despite their

best intentions, researchers often answer these questions dif-

ferently, thus impairing the replicability of their evaluations

and the confidence in their results.

In this paper, we propose a concrete methodology for the

design and analysis of performance evaluations. Our approach

hierarchically partitions the performance evaluation into three

timescales, following the principle of separation of concerns.

The idea is to understand, for each timescale, the temporal

characteristics of variability sources, and then to apply rig-

orous statistical methods to derive performance results with

quantifiable confidence in spite of the inherent variability. We

implement this methodology in a software framework called

TriScale. For each performance metric, TriScale computes

a variability score that estimates, with a given confidence,

how similar the results would be if the evaluation were repli-

cated; in other words, TriScale quantifies the replicability

of evaluations. We showcase the practicality and usefulness

of TriScale on four different case studies demonstrating that

TriScale helps to generalize and strengthen published results.

Improving the standards of replicability in networking is a

complex challenge. This paper is an important contribution

to this endeavor; it provides networking researchers with a

rational and concrete experimental methodology rooted in

sound statistical foundations. The first of its kind. †

1 Introduction

The ability to replicate an experimental result is essential for

making a scientifically sound claim. Without replicability1—

that is, the ability to assess the validity of claims reported by

other researchers—any performance evaluation is question-

able, at best. In networking, replicability is a well-recognized

†Authors’ contributions (CRediT statement)
1Different terminology is used to refer to different aspects of replicability

research [9, 61]. In this paper, we refer to replicability as the ability of

different researchers to follow the steps described in published work, collect

new data using the same tools, and eventually obtain the same results, within

the margins of experimental error. This is usually called replicability [1] but

sometimes referred to as reproducibility.

Table 1: A non-exhaustive list of factors hindering replicabil-

ity, and selected networking references addressing them.

Focus of this paper

Variability in experiment design and data analysis [6, 59, 65]

Other factors hindering replicability

Lack of documentation [6, 44, 76]

Artifacts unavailability/unusability [23, 29]

Uncontrollability of the exp. conditions [18, 53, 57, 86, 87]

Variability of hardware and software behavior [12, 50, 75]

problem which stems from several factors (see Table 1).

To be replicable, performance evaluations must account for

the inherent variability of the experimental conditions—i.e.,

the environment in which the experiment takes place—and the

variability in hardware and software behavior in the system

under test as well as in the measuring system. To facilitate

this, the networking community has put great efforts into

developing testbeds and data collection frameworks, e.g., [57,

86,87]. In addition, several calls for actions have been made to

foster proper documentation [6,65] and artifact sharing [1,23]

which are both essential for replicability.

A more subtle but nonetheless important hindering factor

for replicability are differences in the methodology used to

design an experiment, analyze the resulting data, and draw

conclusions from the evaluation. The literature related to this

problem is currently limited to generic guidelines [6, 54, 65]

and recommendations [39, 44, 59], which leave open several

critical questions before (How many runs? How long should

a run be?) and after experiments are conducted (How to pro-

cess the data and analyze the results?). Without a concrete

methodology, networking researchers often design and an-

alyze similar experiments in different ways, making them

hardly comparable [13]. Yet, strong claims are being made

(“our system improves latency by 3×”) while confidence is

often discussed only in qualitative ways (“with high confi-

dence”), if at all [75, 86]. Furthermore, it is unclear how to

effectively assess whether an experiment is indeed replica-

ble. We argue that a concrete methodology is needed to help

resolve this situation.

Hence, we developed such a methodology for the design

and analysis of performance evaluations for networking re-

search. This paper presents TriScale, an implementation

of our methodology into a software framework making the

https://orcid.org/0000-0002-2218-5750
https://orcid.org/0000-0003-1450-2506
https://orcid.org/0000-0001-7647-3734
https://orcid.org/0000-0003-1455-4381
https://orcid.org/0000-0001-6139-868X
https://nbviewer.jupyter.org/github/romain-jacob/triscale/blob/master/docs/assets/doc/2021_JSYS_CRediT.pdf

Journal of Systems Research (JSys) 2021

methodology readily applicable by researchers. As further

discussed in § 7, we do not claim that our methodology is fit-

ting all situations, nor that it is the best one possible; however,

we do find it useful in many practical cases (§ 5). At a high

level, our methodology has four key desirable properties.

Rationality The methodology rationalizes the experiment

design by linking the design questions (e.g., How many

runs?) with the confidence in the performance claims.

Robustness The methodology is robust against the variabil-

ity of the experimental conditions. The data analysis

uses statistics that are compatible with the nature of

networking data and are able to quantify the expected

performance variation shall the evaluation be replicated.

Generality The methodology is applicable to a wide range

of performance metrics, evaluation scenarios (emulator,

testbed, in the wild), and network types (wired, wireless).

Conciseness The methodology describes the experimental

design and the data analysis in a concise and unambigu-

ous way to foster replicability while minimizing the use

of highly treasured space in scientific papers.

TriScale’s methodology is based on an analysis of the tem-

poral characteristics of variability in networking experiments,

which we argue can be decomposed into three timescales.

For each timescale, TriScale applies a set of appropriate and

rigorous statistical methods to derive performance results

with quantifiable confidence. For each performance metric,

TriScale computes a variability score that estimates, with

a given confidence, how similar the results would be if the

evaluation were replicated. The rest of this paper presents

TriScale and its underlying methodology. More specifically:

§ 2 motivates the importance of the methodology in experi-

ment design and data analysis using a concrete example

from the literature, before introducing TriScale .

§ 3 covers important statistics basics for replicability.

§ 4 details the inner workings of TriScale .

§ 5 illustrates the practicality and usefulness of TriScale with

four different case studies using testbed experiments or

network emulations: congestion control, wireless em-

bedded systems, failure detection, and video streaming.

§ 6 provides concrete recommendations to select TriScale’s

parameters; that is, how to use TriScale in practice.

§ 7 discusses the limitations and possible future develop-

ments of the methodology presented in this paper.

With TriScale, we provide a concrete methodology that

concretely guides networking researchers through the design

of their experiments and the analysis of the gathered data,

while quantifying the replicability of the performance eval-

uation. Hence, TriScale complements prior work toward

replicable networking research that mostly focused on data

collection, e.g., [57, 86, 87].

Reproduce me! We strive to make this paper fully re-

producible. All data and source code are openly avail-

able [36, 37]. Most plots were created using TriScale and

are interactive: the plots themselves are hyperlinks to

online versions allowing for dynamic data visualization.

2 Overview of TriScale

This section first illustrates how TriScale improves the ana-

lysis of experimental results with a concrete example (§ 2.1)

then presents the core principles of the methodology (§ 2.2).

2.1 How TriScale Improves Data Analysis

Assume you are new to the field of congestion control and

would like to understand the strengths and weaknesses of the

state of the art. Luckily, the community has developed useful

tools like Pantheon [87], a data collection framework that

facilitates comparisons of congestion-control schemes.

You are particularly interested in the throughput and one-

way delay of full-throttle flows, i.e., flows whose performance

is only limited by the congestion control. You start with one

flow and evaluate performance using MahiMahi [55], a traffic

and network emulator integrated in Pantheon, using the same

settings as in [87]: 10 runs of 30 seconds each for all the

congestion-control schemes available. Pantheon assists you

in collecting the data, but not in their analysis or interpretation.

Yet, these are two non-trivial tasks. For example, consider

the results shown in Fig. 1a (replicated from [87]) where the

dots indicate the mean performance across all runs for two

metrics: the mean throughput and 95th percentile of the one-

way delay; the ellipses show the 1σ variation across runs,

where σ is the standard deviation. Multiple questions arise:

(Q1) Can the schemes be compared? It appears that TCP Ve-

gas performs better than, e.g., TaoVA-100x. However,

since the ellipses capture the results’ variability, what

can we conclude about the actual performance of these

schemes? Can we conclude anything when the ellipses

are overlapping? E.g., can we say that TCP Vegas per-

forms better than PCC-Expr?

(Q2) What is the confidence in the comparison? Intuitively,

the results of, e.g., PCC-Allegro, which have a large

variability, are less trustworthy than those of, e.g., FillP-

Sheep, for which the ellipse is hardly visible. How does

the difference in variability affect your confidence in the

overall comparison? Can you quantify this confidence?

(Q3) Is a runtime of 30 seconds sufficiently long to fairly

compare the different schemes?

These questions relate to the robustness and rationality chal-

lenges (§ 1) and are left unanswered by the analysis shown

2

Journal of Systems Research (JSys) 2021

FillP
FillP-Sheep

TCP Cubic

TCP BBR

PCC-Allegro

PCC-Expr

TaoVA-100x

TCP Vegas

Copa

PCC-Vivace

Indigo

100 80 60 40

80

90

100

110

120

Mean of one-way delay metric [ms]

Better

Mean of throughput metric [Mbit/s]

(a) Data analysis with Pantheon (replicated from [87]). Dots repre-

sent the mean performance across all runs; metrics are the mean

throughput and 95th percentile of the one-way delay; ellipses

represent the 1σ performance variation across all runs, where σ

denotes the standard deviation.

TCP BBR

TCP Cubic

FillP

FillP-Sheep

Indigo
PCC-Expr

TaoVA-100x

TCP Vegas

PCC-Vivace

100 80 60 40

80

90

100

110

120

KPI of one-way delay metric [ms]

Better

KPI of throughput metric [Mbit/s]

(b) Data analysis with TriScale . Dots represent Key Performance Indica-

tors (KPIs) across all runs: the 25th percentile of the throughput metric

and the 75th percentile of the one-way delay metric (same metrics as in

Fig. 1a). KPIs are estimated with 75% confidence.

Online: tiny.cc/triscale-plots#Figure-1

Figure 1: Sample data from our congestion-control case study (§ 5.1). The same data may be analyzed in different ways.

Compared with Pantheon’s analysis (Fig. 1a), TriScale’s analysis allows for a more intuitive interpretation of the results (Fig. 1b).

The performance of each scheme is reduced to a single point, a TriScale’s KPI, which simplifies the comparison between the

schemes. These KPIs are not arbitrary; they are robust non-parametric statistics estimating, with a given confidence level, the

expected performance if the experiment was repeated. Thus, TriScale’s KPIs inherently account for the variability in the results.

in Fig. 1a. In fact, the figure may even suggest wrong inter-

pretations. Ellipses are two-dimensional representations of

the standard deviation across runs, which one may interpret

that about 68% of the data points to fall in that region. This

is wrong for two reasons: first, in 2D, the correct value is

∼ 40%;2 second, this would be correct only if the underlying

distributions are normal, which is hardly ever true (§ 3).

Fig. 1b illustrates the same data analyzed with TriScale.

The dots now represent TriScale’s key performance indicators

(KPIs). A KPI estimates a given percentile of a performance

metric’s underlying distribution—i.e., the unknown distribu-

tion we would obtain with infinitely many samples—with a

certain confidence. We use the same performance metrics: the

mean throughput and the 95th percentile of the one-way delay,

for which we have 10 samples (one per run). Based on these

10 samples, instead of computing the mean and standard devi-

ation, TriScale computes two KPIs: the 25th percentile of the

throughput metric (higher throughput is better) and the 75th

percentile of the one-way delay metric (lower delay is better),

which we aim to estimate with a 75% confidence level.3 In

other words, with a 75% confidence, 75% of the runs yield a

2In the general case, i.e., multivariate with arbitrary covariance matrix,

the natural generalization of the “normalized distance from the mean” is

given by the Mahalanobis distance [84]. It follows that the generic “m-sigma

rules” of n-dimensional hyper-ellipsoids can be computed as Q(n/2,0,m2/2)
where Q is the generalized regularized incomplete gamma function.

375% is a rather low confidence value (95% would be more common).

However, estimating the 25th and 75th percentiles with 95% confidence

requires at least 11 data points (see Eq. (4)) whereas Pantheon performs

series of 10 runs. To compare TriScale’s and Pantheon’s analysis methods

in this example, we chose to lower the confidence level and keep the same

number of samples.

performance that is at least as good as the KPI values (e.g.,

equal or higher throughput). Hence, we use the same perfor-

mance metrics (mean throughput and 95th percentile of the

one-way delay), but a different aggregation strategy (KPIs

instead of mean and standard deviation). Note that, in this

paper, we simply consider multiple performance dimensions

(e.g., throughput and delay) independently. The approach can

be extended towards multi-objective performance evaluations

using the principles of Pareto-dominance, but such extension

is beyond the scope of this paper.

Using the methodology presented in this paper, TriScale

allows to answer the three questions mentioned previously:

(A1) Since the KPIs are individual dots, we can unambigu-

ously compare the different schemes. Differently to what

Fig. 1a suggests, we observe in Fig. 1b that TCP Vegas

is not strictly better than TaoVA-100x: TCP Vegas per-

forms worse in terms of one-way delay; also, PCC-Expr

performs better than TCP Vegas in both performance

metrics.

(A2) The confidence level of the KPIs explicitly state how

confident we are with these results. The independence

of measurements is empirically tested, which guaran-

tees the soundness of the performance estimation; data

from, e.g., Copa appears correlated and are therefore not

shown in Fig. 1b.

(A3) TriScale tests whether the different schemes have con-

verged (§ 4.5), i.e., the metrics have reached stable values

within the experiment; 30s are actually not enough for

certain schemes (§ 5.1), which biases the comparison.

3

https://nbviewer.jupyter.org/github/romain-jacob/triscale/blob/master/triscale_plots.ipynb#Figure-1a
https://nbviewer.jupyter.org/github/romain-jacob/triscale/blob/master/triscale_plots.ipynb#Figure-1b
http://tiny.cc/triscale-plots#Figure-1

Journal of Systems Research (JSys) 2021

Summary. Tools like Pantheon [87] support data collection,

but leave up to the researcher key parts of the experiment

design (How many runs to perform?) and data analysis (How

to synthesize results?), leading to ambiguous interpretations

and non-replicable results. To address this problem, this paper

presents a concrete methodology implemented in TriScale .

2.2 Core Principles of TriScale

TriScale is a framework for networking experiments (Fig. 2);

it is based on a methodology that streamlines the design and

analysis of performance evaluations to improve the replica-

bility of networking evaluations. Its hierarchical approach

partitions the performance evaluation in a sequence of stages

that build on top of each other and follow the principle of sep-

aration of concerns [85]. Specifically, it splits a performance

evaluation into three timescales, hence the name TriScale.

Given the user’s objectives (e.g., the KPIs to analyze and

the confidence levels to reach), TriScale helps answer ques-

tions such as: How many runs should be done? How long

should the runs be? When to perform the runs? Based on

the answers, the user can then proceed with the data col-

lection. In the analysis phase, the user provides those data

to TriScale which automatically produces expressive and

easy-to-interpret performance reports together with variability

scores that quantify the replicability of the evaluation.

In the rest of this section, we explain TriScale’s main build-

ing blocks. We start by describing the three timescales under-

lying the methodology, then describe how TriScale concretely

supports the users with the design and analysis of their per-

formance evaluations.

Timescales. We structure TriScale’s methodology around

three timescales: runs, series (of runs), and sequels (of series).

These timescales intuitively capture the different sources of

variability underlying performance evaluations in networking.

A run is one execution of an evaluation scenario, e.g., a

30s execution of TCP BBR. During a run, some performance

dimensions are measured, e.g., packet delay, which vary due

to different sources of variability such as protocol dynamics

and cross-traffic. The performance during a run is summa-

rized by a metric, for example, the 95th percentile of the run’s

measurements. Depending on the scenario, one may want the

metric to estimate long-term performance, for example, in

case of long-lasting flows; the run should then be sufficiently

long to let the metric value converge.

Typically, one executes multiple runs to measure perfor-

mance; we call such a set of runs a series. For example, one

may execute 100 runs within one week, from which one ob-

tains a set of metric values, one for each run. We summarize

the performance of a series with a key performance indicator

(KPI) that measures the expected performance for any run by

estimating, e.g., the median of the metric distribution within

the time span of the series (i.e., the time interval in which

runs are performed; e.g., one week). The intuition is that

with a series of runs one randomly samples the distribution

of possible experimental conditions during that week, which

allows to estimate the distribution of a performance metric.

In general, variability sources such as cross-traffic vary

with an a priori unknown temporal long-term correlation;

i.e., the distribution of conditions during a series may not be

stationary but time-varying. Therefore, in order to generalize

the results, one should perform multiple series, which we call

sequels. Intuitively, sequels allow to estimate the expected

performance for any series (e.g., the expected KPI for any

week). Our method uses sequels to compute a variability

score that serves to quantify the replicability of an experiment

by computing a confidence interval for the expected results

one would obtain shall new series of runs be performed.

TriScale uses these three timescales of runs, series, and

sequels to structure the experiment design and data analysis.

Experiment design. The design phase starts with the defi-

nition of the evaluation objectives (Fig. 2, left). For each

performance dimension, the user defines the metric, the con-

vergence requirements, a KPI, and a variability score (§ 4).

Given these inputs, TriScale derives the minimum number

of runs (#runs) and series (#series) needed to compute the

chosen KPIs and variability scores, thus answering the ques-

tion of how many runs to perform. Using data from test

runs or previous experiments, TriScale can assess whether

the runtime appears long enough to let the metric values con-

verge. Additionally, TriScale can make use of these test runs

to identify time-dependent patterns in the experimental con-

ditions (§ 4.6). This is important in order to understand the

root cause of the statistical behavior of the measurements, and

helps to answer the question of when the runs should be per-

formed. Note that the congestion-control example presented

previously uses network emulation; thus, there is no time

dependency, and it does not matter when the experiment is

performed (i.e., span: anytime). The design phase produces

in a report (Fig. 2, right) summarizing how to run the experi-

ments. Based on this report, the user can collect the raw data

and then moves on to the analysis phase.

Data analysis. Once the experiment has been designed and

the data collected, the raw data are passed to TriScale for a

three-stage analysis, one per timescale. First, the raw data

from one run are processed, i.e., convergence is assessed,

and the performance metrics are computed, producing one

number per run and per metric. The short-term variability in

the experimental conditions is accounted for by performing

a series of runs. This timescale leads to one number per

series and per metric: the KPIs (§ 4.2). Finally, the sequels

(repetition of series) are used to compute a variability score

capturing the long-term variability of the KPIs. This timescale

leads to one number per metric (§ 4.3).

4

Journal of Systems Research (JSys) 2021

Figure 2: Overview of TriScale . TriScale is a framework supporting the design and analysis of networking experiments. TriScale

assists the user in the design phase with a concrete methodology to answer important experiment design questions such as “How

many runs?” and “How long should the runs be?” After the raw data are collected, TriScale supports the user by automating

the data analysis. The framework implements robust statistics that handle the intrinsic variability of experimental networking

data and returns expressive performance reports along with a variability score that quantifies the replicability of an experiment.

Readily usable! TriScale is implemented as a Python

package [36]. For each timescale, a dedicated function

takes raw data as input, performs the corresponding test

or analysis, returns the results, and produces optional data

visualizations such as those shown in Fig. 3 to 5. We

aimed to make TriScale intuitive and easy to use. For a

better impression of its usability, you can run an interactive

demo directly in your web browser [38]. See Appendix

§ A for more details.

3 Statistics for Replicability

This section briefly reviews classes of statistical approaches

and motivates the choice of the methods we use in TriScale

to handle the variability inherent to networking evaluations.

Note that, in this paper, we consider a safe evaluation ap-

proach: we do not suppose any knowledge about the statistical

distributions underlying the variability of the measurements.

Of course, tighter estimates are possible if additional reli-

able information is available, which would lead to a different

instance of the framework (discussed in § 7).

Descriptive and predictive statistics. A statistic is a number

computed from some data using a mathematical formula; it

can always be calculated and provides a factual description

of the underlying data. This is referred to as a descriptive

statistic. In addition, certain statistics have some inference

power; i.e., based on the collected data, one may infer the

shape of the (unknown) underlying data distribution. These

are then referred to as predictive statistics.

Predictions are always uncertain and rely on specific hy-

potheses. If the hypotheses hold for the collected data, then

predictive statistics estimate, with a quantifiable level of con-

fidence, some property of the underlying distribution such

as the mean or the median. One can then predict expected

values of data samples that have not been collected. A com-

mon hypothesis is that the collected data is independent and

identically distributed (i.i.d.). Informally, this means that the

underlying distribution of the data does not change and that

successive data samples are uncorrelated (past samples do

not say anything about future samples). It is also common to

presume the nature of the distribution, e.g., a normal distribu-

tion. For example, one can estimate the mean µ and standard

deviation σ of a distribution based on an i.i.d. data sample. If

the underlying data distribution is normal (the hypothesis), we

can infer that about 68% of all data points will be contained

within µ±σ (the prediction). However, if the distribution is

not normal, the statistics µ and σ are only descriptive—they

do not predict anything about unseen samples.

Statistical methods. There are two common classes of statis-

tical approaches: hypothesis testing and estimation.

Hypothesis testing consists of formulating a so-called null

hypothesis that the test aims to reject. Based on the collected

data, one computes the probability, called the p-value, that the

null hypothesis is correct. If the p-value is sufficiently low,

the null hypothesis is rejected and considered proven incorrect.

E.g.,, the one-way ANOVA [81] is a common method to test

for significant differences in the mean of multiple samples.

Estimation consists of computing confidence intervals (CIs)

for a given parameter (e.g., the mean of a distribution). A CI

is always associated with a certain confidence level (e.g., a

5

Journal of Systems Research (JSys) 2021

95% CI) which can be seen as the probability that the inter-

val includes the true value of the parameter; e.g., [a,b] is a

95% CI for the mean if the true mean value is between a and

b with a probability of at least 95%.4

These approaches are further classified as parametric if the

nature of the underlying distribution is known and as non-

parametric if no assumptions are made about the underlying

distribution. For example, the Kruskal-Wallis test [80] is the

non-parametric equivalent of the one-way ANOVA. The tests

are similar, but the former does not assume that the underlying

distribution is normal. The central limit theorem [83] offers

another alternative to handle unknown distributions, but it

only allows to argue about the arithmetic mean.

Statistics for replicability in networking. Informally, repli-

cability is the principle that the “same experiment” leads to

the “same results.” Thus, assessing replicability entails pre-

dicting whether future data (the results of a newly-performed

experiment) will be the same as the known data (the results

of previous experiments); it is a prediction. One important

idea of TriScale is to try to predict the expected amount of

variability in an evaluation, and to use this prediction as a

measure of replicability.

Literature reports that experimental data are rarely normally

distributed and hence recommends using non-parametric

statistics [50, 66]. One should also consider robust statistics

(e.g., using median instead of mean), i.e., statistics that are

not overly skewed by outliers, which are common in experi-

mental networking data. While hypothesis testing is common,

statisticians argue that the methods is misunderstood and mis-

used [45] and are thus calling for a change in practices [24,78].

We favor estimation over testing because CIs are more legible

than p-values and easier to interpret. Furthermore, the confi-

dence level of an estimation only depends on the sample size,

which is useful to guide the experimental design.

In 1936, Thompson introduced a method to compute non-

parametric CIs for percentiles [74]. This approach is found

in statistics [25] and computer science [46] textbooks, but it

is rarely used today ([10, 50, 66] are the few exceptions). As

Thompson’s method is well-suited to handle the variability

of experimental networking data, we use it in the described

instance of TriScale’s methodology (§ 4.5). We illustrate

the potential of the approach (§ 5) and facilitate its use by

providing the necessary software support (§ A).

4Note that this is a frequentist probability: that is, for many repetitions

of the distribution sampling, if [xn,xm] is a 95% CI for the mean (with n

and m two sample indices), then the true mean value will be contained in

[xn,xm] approximately 95% of the time. However, once a specific sample

is collected, it is no longer mathematically correct to talk about probability:

the distribution mean has an exact—albeit unknown—value which is thus

contained in a given numerical interval [a,b] with “probability” of either 0 or

1. This is not an issue per se, but simply a semantic clarification: a confidence

level is not exactly a probability, although the two are often confounded.

4 Designing TriScale

In this section, we first describe the data analysis performed

by TriScale and how the analysis procedure is linked to the

design of an experiment (§ 4.1 to § 4.3). We then illustrate

how the formalism introduced by TriScale allows to unam-

biguously describe an entire performance evaluation with

only a handful of parameters (§ 4.4). We further detail the

robust and non-parametric statistical methods used by this

instance of TriScale (§ 4.5), and discuss how the framework

assists a user in deciding the required time span for a series

of runs (§ 4.6). Finally, we discuss how TriScale’s variability

score allows to assess the replicability of experiments (§ 4.7).

4.1 Runs and Metrics

In TriScale , metrics evaluate a performance dimension across

a run; for example, the mean throughput achieved by a

congestion-control scheme over 30s runtime of a full-throttle

flow. Computing a metric takes the following inputs.

Inputs. • The metric measure, e.g., mean, maximum;
• The convergence requirements

{ expected : True/False ,

confidence : C (default: 95%) ,

tolerance : t (default: 5%) };

• The raw data of the run.

In general, any measure can be used. The current implemen-

tation of TriScale (§ A) supports the arithmetic mean, the

minimum, the maximum, and any percentile. The definition

and usage of the confidence and tolerance are detailed with

the convergence test (§ 4.5).

Procedure. If the run is expected to converge,5 TriScale starts

by performing a convergence test (§ 4.5) whose purpose is

to estimate whether the metric has reached a stable value by

the end of the run—and if it is thus a reliable estimate of the

long-running performance. Note that the performance dimen-

sions and convergence behavior can vary between systems.

Therefore, suitable methods to test for convergence may vary

and need to be considered during the design of an experiment.

The approach presented in this paper does appear well-suited

to a variety of networking experiments (§ 5).

The implemented convergence test starts by computing

metric values over a sliding window of the raw data points,

with a fixed size of half the data points. For each window, one

metric value is computed, starting with the first half of the

data. The window repeatedly slides by a 100th of the number

of points until all data are used, leading to a set of 100 metric

values. TriScale performs its convergence test (detailed in

§ 4.5) on these metric values. Note that this procedure tests

5Not all runs should necessarily converge. For example, consider the

evaluation of an FTP client by downloading a 10MB file. One may be

interested in the throughput during the file transfer (e.g., to study fairness),

but it does not matter whether the throughput actually converges, since there

is a finite task to perform.

6

Journal of Systems Research (JSys) 2021

10 20 30

60

80

Time [s]

One-way delay [ms]

Data

Metric

CI (Slope)

Slope

Tolerance

(a) Raw data (one-way delay) and metric (95th percentile). Example run of TCP Cubic.

87.2 87.3 87.4 87.5
One-way delay metric [ms]

KPI: 87.54 ms

(b) Runs’ metric data and

corresponding KPI value.

87.55 87.6 87.65 87.7
One-way delay KPI [ms]

Var. Score: 0.15 ms

(c) Series’ KPI data and

corresponding variability score.

Figure 3: Example plots produced by TriScale during the data analysis. Fig. 3a: computation of the metric (95th percentile on

one-way delay) with convergence test (confidence 95%, tolerance 5%). Fig. 3b: computation of the KPI (75th percentile with

75% confidence). Fig. 3c: computation of the variability score (25-75th percentile range with 75% confidence). Sample data

from the case study in § 5 (TCP Cubic). Online: tiny.cc/triscale-plots#Figure-3

the convergence of the metric—which is the focus of the

analysis—and not of the raw data. Using a sliding-window

approach helps reduce the impact of the transient behavior

in the raw data on the convergence test. If the test is passed,

TriScale returns the median of the converged metric values as

run metric. If convergence is not expected, TriScale simply

computes the run metric over the whole raw data.

Outputs. • The result of the convergence test (if any);

• The metric value for the run;

• Textual logs, plot of the input and metric data.

Link to the experiment design. The computation of metrics

is linked to the definition of the runtime, i.e., how long a run

should be. If the evaluation scenario is finite (e.g., transmit

1MB of data), the runtime must be long enough to complete

the task. If the evaluation is long-running (e.g., estimate bat-

tery lifetime), the runtime must be long enough for the metric

(e.g., energy consumption) to converge. Details about the

specific convergence test are described in § 4.5. As illustrated

in § 5, TriScale can analyze experiments to estimate whether

the runtime appears long enough i.e., it can assess with quan-

tifiable confidence that the metric values are stable for a given

runtime. However, TriScale cannot guarantee that the run-

time is long enough for a sound evaluation of long-running

performance, as this requires context-specific knowledge.6

4.2 Series and KPIs

TriScale’s KPIs evaluate performance across a series of runs.

Performing multiple runs allows to mitigate the inherent vari-

ability of the experimental conditions. KPIs capture this

6For example, if a system is configured to switch from its bootstrapping

to its steady-state behavior after e.g., an hour, and if we test for only a few

minutes, it is impossible for TriScale to “predict” the behavior change; it is

limited to what is observed.

variability by estimating percentiles of the unknown metric

distributions. Concretely, in TriScale , a KPI is a one-sided CI

of a percentile; e.g., a lower bound for the 75th percentile of

the throughput metric estimated with a 95% confidence level.

Inputs. • The KPI definition
{ percentile : p ,

confidence : C };

• The metric values from a series of runs.

Procedure. To compute a KPI (i.e., to compute a CI for a

given percentile), TriScale uses Thompson’s method (§ 4.5)

which requires the input data to be i.i.d. Therefore, TriScale

starts by performing an independence test (§ 4.5) to check

that the metric data do appear empirically i.i.d.

Outputs. • The result of the independence test;

• The KPI value for the series of runs;

• Textual logs, plot of the metric and KPI data.

Link to the experiment design. The computation of KPIs

is linked to the definition of the number of runs in a series

(# runs) and the series time span (span). The minimal number

of runs in a series directly follows from the definition of the

KPI, i.e., the percentile to estimate p and the desired confi-

dence level C (see Eq. (4)). The series time span refers to

the time interval used for scheduling the runs in a series; i.e.,

when to run the experiment. This is important because net-

works often feature time-dependent conditions; for example,

there may be systematically more cross-traffic during daytime

than nighttime. Failing to consider such dependencies may

bias the results and yield wrong conclusions. This concept

of series also applies when “slicing” a long experiment into

smaller independent ones. In such a case, it is crucial to con-

sider warm-up and cool-down effects to avoid biasing the

results. Note that such slicing strategy is more likely to result

in empirically non-i.i.d. data than a random schedule of truly

independent runs. TriScale helps to detect certain classes of

7

https://nbviewer.jupyter.org/github/romain-jacob/triscale/blob/master/triscale_plots.ipynb#Figure-3a
https://nbviewer.jupyter.org/github/romain-jacob/triscale/blob/master/triscale_plots.ipynb#Figure-3b
https://nbviewer.jupyter.org/github/romain-jacob/triscale/blob/master/triscale_plots.ipynb#Figure-3c
http://tiny.cc/triscale-plots#Figure-3

Journal of Systems Research (JSys) 2021

dependencies with a dedicated “network profiling” function

(example in § 5). Here, again, other dependency analysis

methods can be implemented to tailor TriScale to a specific

class of systems under evaluation.

4.3 Sequels and Variability Score

Sequels are repetitions of series of runs. TriScale’s variability

score evaluates the variations of KPI values across sequels.

Sequels enable TriScale to detect long-term variations of KPIs

and ultimately to quantify the replicability of an experiment.

Concretely, a variability score is made of two one-sided CI

for a symmetric pair of percentiles; e.g., a 75% confidence

interval for the 25-75th percentile range of the delay KPIs

from all sequels. Again, we attach a confidence value to the

CI or, equivalently, to the percentile estimation.

Inputs. • The variability score definition
{ percentile : p (or 1-p),

confidence : C };

• The KPI values of each sequel.

Procedure. The procedure is the same as for the KPIs:

TriScale first performs an independence test on the KPI data

before computing the variability score.

Outputs. • The result of the independence test;

• The variability score value across all sequels;

• Textual logs, plot of KPI values, and corre-

sponding variability score.

Link to the experiment design. The computation of the vari-

ability score is linked to the definition of the number of series

(#series). The minimal number of series directly follows from

the definition of the variability score; i.e., the percentile to

estimate p and the desired confidence level C (Eq. (4)).

4.4 Formalism Brings Conciseness

TriScale formalizes the definition of the evaluation objectives.

As illustrated in Fig. 2, for each performance dimension, the

user defines a metric together with its convergence require-

ments, a KPI, and a variability score. TriScale links these

objectives with the experiment design, resulting in four addi-

tional parameters: the number of runs per series (# runs), the

number of series (# series), the length of a run (runtime), and

the time span of a series (span).

With this formalism, TriScale provides conciseness: 12

parameters are sufficient to formally describe the entire per-

formance evaluation. Since the data analysis in TriScale is

automated and deterministic, documenting these parameters

guarantees computational reproducibility, i.e., the ability to

recreate the results when all raw data are available [48].

Table 2 shows a few examples of concrete parameter set-

tings for typical networking evaluation use cases. For exam-

ple, evaluating the latency of a real-time protocol requires

high confidence levels for extreme percentiles. This quickly

Why not just one big series? A common practice today

is to perform one series of many runs (say 100). The prob-

lem with this approach is that it does not allow estimating

replicability, i.e., what the expected performance is shall

one re-do the experiment (i.e., one series of 100 runs).

Sequels are meant to address this problem: by running

several independent series (e.g., 10 series of 10 runs),a

one can estimate how much the performance varies across

series and thus assess replicability (§ 4.7). This, of course,

comes at a cost. If the total number of runs remains fixed

(e.g., 100), the KPI estimates for each series will be worse,

i.e., resulting in wider CIs and/or using lower confidence

levels—there is no free lunch.

aThe statistical analysis requires the KPI values to be i.i.d. Therefore

one should not perform one batch of 100 runs and simply split them

into chunks of 10 runs to produce 10 series, as this is likely to induce

correlation between the series. The same holds true for “making up”

multiple runs by slicing a large measurement, e.g., making 60 1-minute

runs out of a measurement of one hour. To hold statistically relevant

information, runs and series must be collected independently of one

another (as much as possible).

increases the number of runs that must be performed, e.g., at

least 90 for estimating the 95th percentile with 99% confi-

dence and at least 299 for estimating the 99th percentile with

95% confidence. This illustrates that it is “easier” to increase

the confidence level of an estimation than to estimate a more

extreme percentile with the same confidence level. Note that

both #runs and #series are only derived from the definition of

the KPI and the variability score; i.e., these parameters are not

influenced by the runtime or the time span of an experiment.

The second use case in Table 2 (bottom rows) illustrates

two different perspectives on “averages” using delay as an

example. If one uses the median and the 90th percentile as

metric and KPI, respectively, one can conclude that 90% of

the runs have a median delay equal or better than the KPI

value. Conversely, if one uses the 90th percentile as metric

and the median as KPI, one can conclude that, in half of the

runs, the 90th percentile of the delays in a run is equal or

better than the KPI. Both are “averages,” but with different

meanings and different requirements in terms of number of

runs. Only users can know what is more appropriate for their

evaluation, but it is important to understand this distinction

when designing it.

4.5 Statistics in TriScale

As discussed in § 3, performance evaluations in TriScale

focus on statistics that are both robust (i.e., tolerant to outliers)

and non-parametric (i.e., which make no assumption about

the nature of the data distribution). If reliable information

about the underlying distribution of the data is available, one

can use parametric approaches to produce tighter estimates—

8

Journal of Systems Research (JSys) 2021

Table 2: Exemplary evaluation of typical parameters for networking. ∗TriScale returns the minimal number of runs (#runs) and

series (#series) based on the definition of KPI and variability score, respectively.

Evaluation Objectives

Experiment DesignUse case Metric Convergence KPI Var.Score

Measure Exp. Conf. Tol. Perc. Conf. Perc. Conf. #runs∗ #series∗ runtime span

Latency of 95 95% median 75% 59 3

Depend on

networks and

protocols

real-time max True 95% 5% 95 99% 75 75% 90 5

protocol 99 95% median 90% 299 5

Average median False - - 90 95% median 90% 29 5

delay 90th perc. median 95% median 90% 5 5

see § 7 for more details. However, as this is generally not

the case, we focus here on a TriScale instance that does not

require such information.

The instance of TriScale we present in this paper uses three

carefully-chosen statistical methods. We first present the con-

vergence test used in the computation of metrics, which is

based on the Theil-Sen linear regression [70, 73]. We then in-

troduce the computation of confidence intervals using Thomp-

son’s method [74]. Since this method requires the data to be

i.i.d., TriScale empirically checks whether this requirement

is satisfied with an independence test. We conclude with a

discussion of the consequences if one of the tests fails.

Convergence test. When an evaluation aims to estimate long-

running performance—the expected performance if the run

would continue for a very long time—one must verify whether

the runs appear long enough to produce reliable estimates.

To this end, TriScale implements a convergence test based

on the Theil-Sen linear regression [70, 73]. This approach

computes the slope of the regression line as the median of

all slopes between any pair of data points. A C% CI for the

slope is defined as the interval containing the middle C% of

slopes. TriScale’s convergence test is passed if the C% CI for

the regression is included in the tolerance value (± t%). The

confidence C and the tolerance t can be specified by the user

in the evaluation objectives (see Fig. 2, left) and are otherwise

set to 95% and 5% by default, respectively.

Such a test is sensitive to the scale of the input data. To re-

move this dependency, TriScale first maps the data to [−1,1]
using a linear transformation, then performs the convergence

test on the scaled data. Hence, the convergence test becomes

dimensionless, and the same tolerance value can be used to

compare different protocols or systems without bias. Fig. 3a

shows an example of the Theil-Sen slope (brown, solid), its

CI (light blue, solid), and the tolerance (black, dashed).

Note that this convergence test is based on some assump-

tions; e.g., that the convergence of metric values is captured

by the convergence of the slopes toward zero. This does not

hold if one measures, e.g., energy consumption since it is cu-

mulative over time; one should measure power draw instead.

Finally, note that convergence is not necessary for repli-

cability; an experiment can be replicable but not “converge,”

e.g., due to a too short runtime (Fig. 4). However, conver-

gence is required to assess whether the runtime is long enough

to produce reliable performance estimates (again, see Fig. 4),

which is paramount to fairly evaluate and compare systems.

Confidence intervals. TriScale defines KPIs and variability

scores based on CIs for distribution percentiles, which can be

computed using a robust and non-parametric approach based

on Thompson’s method [74], later shown to be valid for any

independent sample of a continuous distribution [25].

Let us denote by Pp the p-th percentile of a distribution

and by P(X) the probability of an event X . By definition, a

data sample x is smaller than Pp with probability p (and larger

with probability 1− p). For a sorted list of i.i.d. samples xi

(where i = 1...N), the probability that Pp lies between two

consecutive samples follows the binomial distribution [74]:

P(xk ≤ Pp ≤ xk+1) =

(
N

k

)
pk(1− p)N−k, k = 0...N (1)

where we assume that x0 →−∞ and xN+1 →+∞. From this

result, it follows that the probability for Pp to be larger than

any sample xm (1 ≤ m ≤ N) can be computed as:

P(xm ≤ Pp) = 1−
m−1

∑
k=0

(
N

k

)
pk(1− p)N−k (2)

Note that these probabilities are symmetric; that is,

P(xm ≤ Pp) = P(xN−m+1 ≥ P1−p) (3)

Thus, Eq. (2) provides either the upper or lower bound re-

quired for computing a one-sided CI. If the probability dis-

tribution is discrete, then Eq. (2) becomes an inequality

(P(xm ≤ Pp) ≥ . . . [25]), which provides safe (i.e., conser-

vative) estimates of which sample xm is the bound of the CI

of interest. Furthermore, by plugging m = 1 in Eq. (2), one

can derive a closed form expression for the minimum number

of samples N required for x1 to be a CI (lower bound) for any

9

Journal of Systems Research (JSys) 2021

percentile p with any confidence level C [66]:

N ≥ log(1−C)

log(1− p)
(4)

By Eq. (3), Eq. (4) also gives the number of samples N re-

quired for xN to be a CI (upper bound) for any p and C.

TriScale leverages Eq. (4) to define the minimum number

of runs and series required for estimating the KPIs and the

variability scores. This approach provides robust estimates

for distribution percentiles and does not make any assumption

on the nature of the underlying data distribution. It does,

however, require that the data samples are i.i.d.; thus TriScale

checks whether this requirement holds with an empirical in-

dependence test, described next.

Independence test. Estimating the percentile of a distribu-

tion often (if not always) requires that the samples are i.i.d.

This is also the case for Thompson’s method [74]. TriScale

implements an empirical independence test to check whether

we can safely treat the samples as i.i.d.7 This independence

test is applied to the metric data (resp. KPI data) before the

computation of a KPI (resp. a variability score). This poses

the particular challenge that the number of data samples may

be very small (e.g., 3 or 5 KPI values). TriScale’s indepen-

dence test must therefore not be too strict.

The test proceeds in two steps. First, TriScale tests whether

the data are weakly stationary (i.e., no trend and constant

autocorrelation structure [17]). TriScale verifies this empir-

ically using its convergence test with a confidence of 50%

and a tolerance of 10%; these “loose” parameters are used to

compensate for (very) small sample sizes. Second, TriScale

computes the sample autocorrelation coefficients, denoted by

ρ̂k, which measure the linear dependence between values of

a weakly stationary data series, where k is the lag between

data points. A series of size N is i.i.d. with 95% probability if

|ρ̂k| ≤ 1.95/
√

N for k ≥ 1 [17].

What if a test fails? The user is responsible for designing the

evaluation in such a way that the collected data will (likely)

pass the tests. TriScale facilitates this by guiding the choice of

runtime to pass the convergence test and informing about any

network time dependencies (§ 4.6) to pass the independence

test. Yet, the data may still be correlated or unstable, leading

to failing tests (see examples in § 5). Even in such cases,

the data may contain useful information. TriScale’s metrics,

KPIs, and variability scores can be computed. However, since

the required hypotheses do not hold, the statistics are only

descriptive (§ 3); that is, they do not allow to predict the

7Generally, i.i.d.-ness is a property of the experiment design, not of the

data. For networking experiments, however, it is often not possible to guar-

antee independence: e.g., the experimental conditions cannot always be fully

controlled and may be correlated. In such cases, it is common to empiri-

cally check whether the data are correlated. If the empirical dependence

between data samples is sufficiently low, it is considered acceptable to treat

the samples as i.i.d. [46].

expected performance and, in particular, they cannot—and

should not!—be used to assess an experiment’s replicability.

4.6 Network Profiling

TriScale can assist the user in deciding on the time span for

a series of runs, i.e., the time interval containing all the runs

of one series. This is important in order to avoid biasing the

evaluation results with time dependencies in the experimental

conditions. Indeed, it is common for networks to exhibit peri-

odic patterns. For example, there may be more cross-traffic

(i.e., interference) at specific times of the day. In the statis-

tics literature, these patterns are called seasonal components.

Neglecting these may bias experiments and lead to wrong

conclusions, as illustrated e.g., in § 5.2 and [75].

To address this, TriScale’s network profiling function ana-

lyzes “network condition data.” Informally, such data should

be measurements of metrics that capture the “friendliness” of

the experimental environment for the system we evaluate. For

example, this could be noise floor data (in a wireless testbed)

or congestion levels (in a wired network). It is important that

these data are collected prior to the performance evaluation

and at regular intervals; this may be a significant overhead, but

it is necessary to identify possible seasonal components in the

experimental conditions. Some academic testbeds regularly

collect and make such data available, e.g., [40]. Practically,

TriScale computes the autocorrelation coefficients of the net-

work condition data. Peaks in the autocorrelation plot suggest

seasonal components in the network conditions (see Fig. 5),

which helps detect sometimes-unexpected time dependencies.

To avoid biasing the results, the span of a series of runs

should be chosen as a multiple of the—assumed, known or

observed—seasonal components. The same care must be

taken when choosing the time of a run within a series; it is

recommended to randomly sample the entire span of a series.

While this profiling approach is designed to identify the

dynamics of one environment, it may also be used to compare

different ones. For example, a cellular network in a business

district and a residential area may exhibit different seasonal

patterns. When attempting to replicate an experiment in a

different environment, one must adapt the experiment design

to account for the dynamics of that specific environment.

4.7 Assessing Replicability

Replicability refers to the ability of obtaining “the same” re-

sults when performing “the same” experiment. In statistics,

such property can be investigated using equivalence test-

ing [45], which checks whether the values of some parameter

of interest, for example the median, obtained for different

samples are sufficiently close to be considered “the same.”

Unfortunately, there is no general way to define “the same”

or even “sufficiently close.” One must specify in advance a

threshold for the equivalence test based on expertise.

10

Journal of Systems Research (JSys) 2021

20
0

50

100

Time [s]

Throughput [Mbit/s]

(a) 30s runtime

0 20 40 60
0

50

100

Time [s]

Throughput [Mbit/s]

(b) 60s runtime

Data

Metric

CI (Slope)

Slope

Tolerance

Figure 4: Egress throughput of the LEDBAT congestion-control scheme in MahiMahi [55]. A runtime of 30s is clearly not

sufficient for LEDBAT’s throughput to converge (Fig. 4a). The scheme does converge eventually (Fig. 4b), but even with 60s

runtime, TriScale’s convergence test fails as the impact of the start-up phase is too important when all data are considered. Two

possible solutions would be to either (i) increase the runtime or (ii) prune the start-up time from the raw data. See Appendix

§ B.1 for further details. Online: tiny.cc/triscale-plots#Figure-4

Then, how to assess replicability of networking experi-

ments? How to design a “replicability test” that fairly adapts

to different networking contexts and metrics? Setting fixed

absolute threshold values does not make much sense. The

next natural idea is to consider relative thresholds, e.g., ±5%

of the median value. One problem with this approach is that

it measures how stable the results are, which does not exactly

capture the notion of replicability: one system can have large

performance fluctuations, but these fluctuations may be stable

over time (e.g., the saw-tooth behavior of a congestion win-

dow). The performance evaluation of such a system should

be assessed as replicable, but a relative threshold would be

biased to rule against it. Moreover, setting appropriate val-

ues (e.g., 5%) appears difficult—if not impossible—to do in

a context-agnostic manner and would work against our ob-

jective of generality. We conclude that defining a generic

threshold for equivalence testing in networking might not be

possible. But it may also be unnecessary!

We argue that it is more important to confidently estimate

the variability of the results, which TriScale computes with

its variability score (§ 4.3). This score quantifies replicability:

the larger the score, the less replicable are the results (see the

example in § B.1). Shall a binary cut between “replicable”

and “not replicable” be desired, a threshold can be set based

on the variability score, e.g., “Results are said replicable

when the variability score is less than 20Mbps.” Clearly, such

a threshold can only be context-specific. Thus, deciding

on threshold values is more related to benchmarking and

therefore goes beyond the scope of TriScale (see § 7).

5 TriScale in Action

We present four case studies which illustrate shortcomings

in performance evaluations that TriScale addresses (§ 5.1–

5.2), and show how TriScale allows generalizing performance

claims with a quantifiable confidence (§ 5.3–5.4). Further

details on these case studies (e.g., link to datasets, plots) are

available in Appendix § B. Finally, we show that TriScale’s

data analysis induces no significant overhead (§ 5.5).

5.1 Congestion Control

The first case study illustrates that, for estimating long-

running performance, it is important to carefully set the length

of runs (the runtime) and to check whether the performance

has converged for the system under evaluation.

We continue the evaluation introduced in § 2.1, which

compares congestion-control schemes using Pantheon [87].

Assume we are now interested in long-running flows; that is,

our goal is to estimate the performance one would obtain if

the flows ran “forever.” TriScale’s convergence test (§ 4.1)

checks whether the length of a run is long-enough to provide

a robust estimate. Since all schemes are different, it is hard to

know a priori the minimum runtime for which the schemes

actually converge. For this reason, we test runtimes from 10

to 60s and check when the schemes pass the test.

For a runtime of 30s (used by the maintainers of Pan-

theon [58]), only 11 out of 17 schemes pass the test (i.e.,

converge) in most of the cases. Verus, PCC-Allegro, and

Copa only converge in less than half of the runs (see § B.1),

whereas QUIC Cubic, TCP Vegas, and LEDBAT never pass

the test, even with a runtime of 60s. Fig. 4 details the case of

LEDBAT. The functioning of this congestion-control scheme

causes the throughput to ramp-up in the first 38s and then

converge to about 92Mbps. Thus, if one uses a runtime of

30s without checking for convergence, the computed mean

throughput is about 40Mbps, which is a totally wrong estima-

tion of LEDBAT’s long-running throughput.

Takeaway 1. Always check for empirical indepen-

dence; check for convergence whenever necessary.

TriScale’s convergence test checks whether the runtime

of an experiment appears sufficiently long to estimate the

system’s long-running performance. Failing tests inform

users about the need to increase the runtime or take other

measures (e.g., pruning the start-up phase of raw data) in

order to avoid wrong conclusions. Independence should

never be assumed and always empirically validated.

11

https://nbviewer.jupyter.org/github/romain-jacob/triscale/blob/master/triscale_plots.ipynb#Figure-4
https://nbviewer.jupyter.org/github/romain-jacob/triscale/blob/master/triscale_plots.ipynb#Figure-4
https://nbviewer.jupyter.org/github/romain-jacob/triscale/blob/master/triscale_plots.ipynb#Figure-4
http://tiny.cc/triscale-plots#Figure-4

Journal of Systems Research (JSys) 2021

5.2 Wireless Embedded Systems

This case study shows the importance of carefully choosing

the time span for a series of runs. In particular, if there are

strong temporal patterns in the experimental conditions, one

may derive wrong results in spite of high confidence levels.

We run a simple evaluation of Glossy [28], a low-power

wireless protocol based on synchronous transmissions [90].

A key parameter of Glossy is the number of retransmissions

N. We are interested in investigating the impact of N on

the reliability of Glossy, measured as the packet reception

ratio (PRR), for which we aim to estimate the median value

with a 95% confidence level—our evaluation’s KPI. Refer to

§ B.2 for more details. We collect data using the FlockLab

testbed [47], which is located in an office building where we

expect more interference during daytime than nighttime.To

mitigate this effect, we perform series of 24 runs scheduled

randomly within one day, one per value of N. Computing the

KPI leads to a PRR of 88% and 84% for N = 1 and N = 2, re-

spectively. In other words, it appears that two retransmissions

instead of one reduces reliability.

The experiment led to this (incorrect) conclusion because

we (intentionally) neglected a weekly seasonal component

revealed by TriScale’s network profiling function (Fig. 5):

there is more interference on weekdays than on weekends.

To account for this dependency, we repeat the experiment

but extend the overall span to one week; this leads to KPI of

80% and 88% for N=1 and 2 respectively, which matches our

expectations on Glossy’s reliability.

1 7 14 21
−0.5

0

0.5

1 95% CI on i.i.d. test

Sample Autocor. Coefficients

Lag (days)

Figure 5: Autocorrelation plot for the wireless link quality on

FlockLab [47], based on the raw data collected by the testbed

maintainers [40]. The dataset contains one test every two

hours, and we show here the lag in days (i.e., at lag 1, we find

the correlation between tests that are 24h apart). The first

peak at lag 1 indicates the (expected) daily seasonal compo-

nent. The data also show another clear peak at lag 7, which

corresponds to one week. Indeed, there is less interference

in the weekends than on weekdays! See Appendix § B.2 for

further details. Data recording during August 2019. Online:

tiny.cc/triscale-plots#Figure-5

Takeaway 2. Using a high confidence level does not

prevent wrong conclusions! Real networks exhibit short-

term variations that are unpredictable and often unavoid-

able, which is why it is important to perform multiple

runs in a series. Moreover, there may also be systematic

patterns; i.e., epochs with consistently more or less inter-

ference. Knowing about and accounting for these patterns

is important to ensure fair comparisons. The time span

of a series should be long enough such that it does not

matter when the series of runs starts. To avoid biasing

the results, the span should be chosen as a multiple of

the seasonal components, which can be identified using

TriScale’s network profiling function.

5.3 Failure Detection

This case study illustrates how the methodology of TriScale

allows generalizing performance claims for large sets of input

parameters based on a relatively small sample. We focus on

Blink [35], an algorithm that detects failures and reroutes traf-

fic directly in the data plane. The authors evaluated Blink’s

performance in terms of the true positive rate (TPR—the frac-

tion of failures successfully detected) and the time needed to

reroute the traffic based on 15 Internet traces [19, 21] contain-

ing data for thousands of prefixes. A subset of prefixes was

randomly selected, based on which synthetic traces including

artificial failures were generated.

Using TriScale, we can generalize the results. For each

trace, the evaluation of Blink on one prefix can be seen as

a TriScale run. Since the prefixes are randomly selected

from a fixed set, runs are i.i.d., and we can use TriScale’s

KPI to derive the expected performance of Blink for any

set of prefixes (Fig. 6). § B.3 provides more details about

Blink’s analysis using TriScale , which allows claiming with

95% confidence that, for at least 50% of the prefixes, Blink

always detects link failures (TPR= 1) and reroutes traffic

within 1s (Fig. 9).

Random

sample

of prefixes

Results in Blink

mean TPR

0.86

median speed

1.02s

Results with TriScale

median TPR

median speed

confidence

1

0.93s

95%

Valid for the

sample onlyValid for any

random set of

prefixes in the trace

Caida trace

equinix-nyc.dirB

Failure detected

1

0 Failure

Rerouting speed (s)

1

0 Failure

Raw data

Figure 6: Using data from a sample of prefixes, TriScale

allows generalizing and deriving performance estimates for

any random set of samples from the same Caida trace [19].

See Appendix § B.3 for further details.

12

https://nbviewer.jupyter.org/github/romain-jacob/triscale/blob/master/triscale_plots.ipynb#Figure-5
http://tiny.cc/triscale-plots#Figure-5

Journal of Systems Research (JSys) 2021

Takeaway 3. Using TriScale , one can generalize per-

formance results for a larger set of inputs. TriScale’s

methodology can handle any source of performance vari-

ability as long as the variability source can be reasonably

modeled by a stationary distribution. Thus, one can use

TriScale to generalize performance claims for evaluations

based on network emulation: one can randomly select

input traces or system parameters, and derive the expected

performance of any other random set. However, the sta-

tionarity assumption cannot always be guaranteed (e.g.,

for cross-traffic over the Internet), which is why TriScale

includes an empirical independence test.

5.4 Video Streaming

This case study shows that the methodology of TriScale is

easily compatible with common data reporting practices in

networking, such as cumulative density functions (CDF).

In video streaming research, performance is often mea-

sured using the quality of experience (QoE) for the user as

metric, for example, to compare state-of-the-art adaptive bi-

trate algorithms such as RobustMPC [88] or Pensieve [49].

Since QoE typically varies a lot, CDFs are often used to give a

more global view on the performance of an algorithm. For ex-

ample, Fig. 7 (area) shows the CDF achieved by Pensieve over

a static set of synthetic network traces (reproduced from [49],

see § B.4). However, CDFs are no different from other me-

trics: What is the confidence in the result? How much would

it vary with a different set of traces?

A CDF is a representation of all percentiles of a given

distribution. Hence, TriScale can be used to estimate an

entire CDF by computing a large set of KPIs. For example,

Fig. 7 (solid line) shows the 95% CI for the 2-th to the 98-th

percentile, which provides a lower-bound on the expected

performance. Hence, one can claim that, for any set of traces

that would be generated/obtained similarly, the QoE of an

algorithm is better than the CI CDF with 95% confidence.

1 2
0

50

100

95% CI on CDF

Sample CDF

Mean QoE

CD
F

Figure 7: A CDF and its 95% CI, computed by TriScale.

Original CDF reproduced from [49]. The CI provides a lower-

bound on the expected performance for any other random set

of input traces generated similarly. Details in Appendix § B.4.

Online: tiny.cc/triscale-plots#Figure-7

Takeaway 4. Percentiles are useful to evaluate any

performance metric. Using percentiles as KPIs makes

TriScale metric-agnostic. Any variability source that can

be modeled as a stationary distribution can be handled.

5.5 Scalability of TriScale Data Analysis

The data analysis proposed in TriScale induces no significant

overhead. The computation time for the data analysis scales

linearly with the input size, and it is fast (less than 1s for

one million data points on a commodity laptop): this will

almost always be negligible compared to the data collection

time. We evaluated the scalability of TriScale by measuring

its computation time, i.e., we measured how the time needed

for the data analysis scales with a growing input size. To

this end, we only considered the time required for performing

computations, and exclude other outputs such as logs and

plots (e.g., Fig. 3a). See Appendix § C for more details.

6 Using TriScale

In this section, we provide concrete recommendations to se-

lect TriScale’s parameters (e.g., confidence levels), as well as

how to accommodate unusual metrics or experimental setups.

Choosing percentiles and confidence levels. In statistics, a

confidence level of 95% is often considered standard. It is not

recommended to use a lower value unless you are strongly

limited in the number of runs you can perform. In any case,

never go below 75%—at this level, an estimation has one

chance out of four to be wrong!

For KPIs, use the median as a default. If you are interested

in tail performance, consider more extreme percentiles (e.g.,

10th or 90th). If you want to show that some metric is small

(e.g., some delay), then use a large percentile (e.g., 90th);

the KPI is an upper-bound for that percentile, hence, you can

conclude, e.g., that 90% of runs are expected to have a delay

at most as large as the KPI value. For variability scores, use

the median. It is unlikely that you can perform so many series

to be able to do anything more ambitious than that.

From a percentile and confidence level, TriScale’s API [36]

returns the minimal number N of runs (or series) that you must

perform (Eq. (4)). Do more if you can, as more runs improve

the reliability of the empirical independence test (§ 4.5). To

increase robustness against outliers, TriScale’s API can also

return the minimal N with r samples excluded from the CI.8

Does TriScale support any metrics? TriScale’s methodol-

ogy is applicable to any performance metric. While its con-

vergence test is not directly applicable to cumulative metrics

8There is no closed form expression like Eq. (4) for this calculus; thus,

TriScale simply computes Eq. (2) with m = r and increasing N until the

desired confidence level is reached.

13

https://nbviewer.jupyter.org/github/romain-jacob/triscale/blob/master/triscale_plots.ipynb#Figure-7
http://tiny.cc/triscale-plots#Figure-7

Journal of Systems Research (JSys) 2021

(e.g., energy consumption), this can be worked around by

converting them to rates (e.g., power draw; that is, the energy

consumed over time) when testing for convergence.

In certain contexts, the time to convergence of a system is

an important metric, e.g., the recovery time after a link failure.

The definition of “convergence” in such cases is context-

dependent, and it is orthogonal to TriScale. One could use

TriScale’s convergence test on an increasing slice of raw data,

stop when the test passes, and use that as measure of the time

to convergence. However, TriScale’s test is not designed for

this purpose; it may not be the best, nor even a good idea.

Defining runtime. There are two default ways to define an

appropriate runtime:

• If your experiment consist in fulfilling a given task, e.g.,

transmit 1GB of data, then the runtime must be long

enough for the task to complete.

• If your experiment aims to estimate steady-state perfor-

mance, e.g., the power draw of a Wi-Fi network, then the

runtime must be long enough for the metrics to converge.

One cannot a priori say how long a run should be; you must

try it out and validate it. One possible approach is to perform

a few (excessively) long runs and observe how long it takes

for the task to complete, or for the metrics to converge; this

provides a reasonable estimate for an appropriate runtime.

To decide whether you need convergence for your experi-

ment, ask yourself the following question: Is performance

expected to be the same if you increase the runtime by, say

10×? If yes, you should test for convergence.

Note that the runtime does not always need to be the same

for all runs. For example, in video streaming, a run would

be one video session, and different sessions have different

durations. The runtime then simply becomes a factor that

should be randomized and sampled in an i.i.d. way.

Ask for advice. If the above recommendations are insuffi-

cient to nail down your experiment design, you can always

ask for advice! An online forum is available for that pur-

pose: https://groups.google.com/g/triscale

7 Discussion and Future Work

Data collection. TriScale is not responsible for the execu-

tion of networking experiments: it does not perform the

data collection. Other frameworks such as Pantheon [87]

or Puffer [86] are specialized in data collection; other exam-

ples include low-power wireless testbeds [47, 67, 68] and net-

working facilities [8, 26, 57]. TriScale can be integrated into

these frameworks to create a fully-automated experimentation

chain and build full-fledged benchmarking infrastructures, as

envisioned by some networking communities [13]. In such a

system, TriScale could be used as part of a feedback loop that

would perform additional runs until a sufficiently narrow CI

is obtained; e.g., until a given replicability target is reached.

TriScale does not account for specific features of testbeds

or data collection tools, such as those discussed e.g., in [75];

this is intentional, as it would otherwise restrict the scope

and applicability of the methodology. Moreover, one cannot

magically “salvage” a poorly designed evaluation or an un-

stable experimental setup; what TriScale can do, however,

is to observe and assess whether the chosen parameters and

experimental setup eventually lead to replicable results. Fur-

thermore, the links between the design and analysis phases of

our methodology allow to rationally advise on how to design

an experimental evaluation that is likely to produce replicable

and trustworthy results—a unique feature of TriScale .

Human-in-the-loop. TriScale automates the data analysis

and implements tests that verify whether the required hy-

potheses hold. However, it is up to the user to critically assess

why tests fail when they do (e.g., because the runtime should

be longer—§ 5.1), and derive corresponding countermeasures

(e.g., pruning the start-up time in the raw data). Furthermore,

some feedback and iterations are likely between the first set of

tests and the final evaluation, as a larger set of experiments of-

ten uncover insights such as unknown correlation or seasonal

components in the system being evaluated.

Ranking solutions. TriScale measures performance, but it

does not rank. The evaluation results are always relative to a

specific network or evaluation scenario (e.g., a given cloud

provider [75]). It is not trivial to claim that a solution A is

generally better than a solution B. This problem relates to

benchmarking and multi-objective optimization, which goes

beyond the scope of TriScale .

Community guidelines. TriScale formalizes evaluation ob-

jectives (§ 4.4), but it does not dictate which parameters

should be used. Similarly, TriScale quantifies the replica-

bility of an experiment rather than concluding whether the

evaluation is replicable (§ 4.7). Building on TriScale’s formal-

ism, networking communities can now more easily set their

own standards, metrics, reference parameters, and acceptable

requirements in order to make performance evaluations more

comparable, as it has been done in other disciplines [30].

Other instances. In this paper, we present a methodology

to design and analyze performance evaluations. TriScale is

one concrete instance of that methodology, composed of a

well-chosen set of statistical approaches. We do not claim

that TriScale is the only valid nor the best possible instance

of the underlying methodology. In some context, the systems

to evaluate may have a behavior benefiting from or requiring

other models or statistics. Relevant examples include the

definition of convergence (which may be different depending

on the system), the normalization of measurements using

different scaling function, the sampling of runs within series

and series within sequels (periodic vs. random vs. biased

random), as well as the availability of knowledge about the

distributions or other statistical properties of measurements.

14

https://groups.google.com/g/triscale

Journal of Systems Research (JSys) 2021

In such cases, one can build a different instance of TriScale

based on the same methodology—i.e., the concept of sepa-

rating the variability sources into different time scales and

addressing them independently—which can be generally ap-

plied with different statistical approaches. The specific in-

stance we present in this paper does already appear well suited

for a large class of performance evaluation scenarios, as ex-

emplified by the case studies in § 5.

Limitation. In networking applications, many variability

sources are time-dependent; this can be explained by the

correlation (positive or negative) of a large portion of net-

work traffic with human activity. This motivated the use of

time scales to structure the TriScale framework. In some

cases however, such time-based structure may not be the most

appropriate; for example, for research on attack protection,

or failure mitigation. Occurrences of such events are (a pri-

ori) not strongly time-dependent. This is also true for single

events, such as the COVID pandemic and its impact on the

Internet, or the 2021 Facebook outage [51]. For such studies,

even the notion of replicability is debatable in itself.

Under the "Limitation" sub-section in Section 7, you state

"The TriScale framework is designed with networking appli-

cations in mind, where the main variability factor is time—or

can be modeled as such". I think this is a strong claim which

is not well clarified. Network characteristics can vary based

on link bandwidth, delay, and a variety of other factors. I

believe TriScale can work in many such scenarios. The em-

phasis on time is not clear here. Security lapses are a nice

counter-example. But is this the only category that cannot be

handled by TriScale? It will be helpful if you can add more

information on limitations.

However, even in such cases, the principles underlying

TriScale’s methodology are still useful: with proper statistics,

one can generalize performance claims based on a sample, as

we illustrated with one of our case studies, related to failure

detection (§ 5.3). In this example, the distribution we sample

from is not time-dependent: it is a fixed distribution of pre-

fixes in a set of traffic traces. There, KPIs allow generalizing

performance observations to all prefixes, based on a sample.

In summary, while the full TriScale framework is not appro-

priate to all use cases, its core principles—i.e., randomizing

factors and using non-parametric CIs—are useful for any ap-

plications with performance variability, as long as we have

some control over the factors to randomize.

Multi-objective evaluation. In this paper, we consider per-

formance dimensions independently of each other. In many

cases though, one is interested in comparing performance over

multiple metrics (e.g., delay and throughput). The concept of

Pareto-dominance can be useful to extend the methodology

to multi-objective performance evaluations. Moreover, net-

working metrics are often correlated (Fig. 1a), which should

be accounted for in a multi-objective setting. How to address

this is a complex question that we leave for future work.

In addition, one may be interested in two-sided intervals for

KPIs, such that the expected performance is both upper- and

lower-bounded. Currently, TriScale supports this by defining

two independent KPIs; again, a better way to account for the

correlation between these bounds would be interesting.

Use what you need. In this paper, we describe a full pipeline

leading to a quantification of replicability. One may not

always be interested to go all the way and assess replicability

for every experiment; maybe you do not need convergence

of runs, or maybe you do not need a strong statement on

replicability. Each statistical method we present tackles a

specific problem and is individually useful. Use what you

need for your own experiments.

Do what you can. Assessing replicability is hard: to

make meaningful statements, one requires many runs,

spread across large time periods, and often scheduled ran-

domly. This might be impractical (if not impossible) to do

on shared experimental platforms or testbeds. But that’s

what you need for replicability! If it is not possible, fine;

but make sure not to overstate your performance claims!

8 Related Work

The replicability of experiments and comparability of results

are cornerstones of the scientific method. In recent years,

several studies have highlighted the inability of researchers

from various disciplines to replicate their own experimental

results [7, 60], often due to sloppy research protocols and

faulty statistical analysis [12, 14, 66]. This is a problem in

computer science as well [23, 76], where experiments are

seldom replicable and artifacts rarely shared.

Promoting replicability. Recent work demonstrated that

poor experimental and statistical practices has led to wrong

or ambiguous conclusions. [75] presented a survey of recent

cloud computing works and concludes that more than 60%

of papers reports poor or no specification of the experiments,

and that three-quarter of those that do are using fewer repeti-

tions than necessary to mitigate the performance variability

of cloud infrastructure. The Puffer project [86] showed that,

for adaptive bit-rate algorithms, even with 2.5 years of data,

the size of 95% CI of some performance metrics—i.e., the

uncertainty—is of the same scale as the performance “im-

provements” claimed in the original papers. To address this

“replicability crisis” [7], many efforts aiming to incentivize a

rigorous experimentation have gained momentum in computer

science, including e.g., ACM’s badging system for publica-

tions [1]. In the networking community, especially challenged

by the need to carry out experiments in dynamic and uncon-

trollable conditions [18, 53], several workshops [5, 16, 32],

surveys [29], and guidelines [6, 44, 54, 65] have raised aware-

ness on the replicability problem and promoted better experi-

mentation practices. This large body of work mostly offers

15

Journal of Systems Research (JSys) 2021

qualitative statements on how an experiment should be per-

formed and documented. Such statements emphasize, e.g.,

the need to carefully choose when and how often to sample

data [6], or suggest which methodology to adopt during per-

formance evaluations [44]. However, there is no guarantee

that following these recommendations leads to replicable re-

sults, nor a concrete way to assess whether an experiment can

be considered replicable.

In contrast, TriScale provides researchers with quantita-

tive answers about how to concretely design an experimental

evaluation (e.g., how many runs should be performed and

how long they should be), which are derived from a clear ex-

perimental methodology grounded on robust non-parametric

statistics. Moreover, TriScale offers a way to assess and

compare the replicability of experimental results using clear

performance indicators and variability scores.

Supporting replicability. Many experimental facilities and

tools have been developed to aid researchers in carrying out

replicable networking studies [57, 71]. Testbeds such as Emu-

Lab [79] and FlexLab [63], as well as emulation tools such

as MiniNet [33] and the mini-Internet [34], enable the cre-

ation of artificial network conditions using a given specifi-

cation or passively-observed traffic. Emulated conditions

offer a more controlled environment than experiments with

real-world traffic (e.g., by transmitting data over the Inter-

net [11, 22], cloud [15, 26], or wireless interfaces [2, 31, 52]).

However, even emulation suffers from performance variabil-

ity caused by the underlying hardware and software compo-

nents, which hampers replicability [50]. To overcome these

problems, several solutions have been proposed [27], such as

revisiting OS libraries [72], using virtualization [33, 42, 43],

adaptable profiles [64], and fault patterns [4]. For “real-

world” evaluations, other tools have been developed to sup-

port the replicability of mobility experiments [8, 20], interfer-

ence generation [69], web pages load time estimation [77],

live-streaming measurements [89], high-frequency wireless

throughput estimations [3], and to enable researchers to con-

sistently evaluate congestion-control schemes [87] or adaptive

bit-rate (ABR) algorithms [86]. Note that real-world testbeds

like Puffer [86] cannot control their test environment. Instead,

they support replicability by randomly assigning ABR algo-

rithms to video sessions and build statistical confidence out

of massive amounts of data (over streaming 2000h/day in the

past two weeks9). We cannot hope to replicable this for every

performance evaluation; TriScale offers a different approach.

The aforementioned tools aim to improve replicability dur-

ing the experiments, while TriScale assists researchers before

and after their execution. It does so by informing about the

number and length of runs necessary to reach a given level

of confidence, as well as by computing a score quantifying

the variability of the results. Hence, TriScale complements

the existing body of literature promoting and enhancing repli-

9https://puffer.stanford.edu/results/

cability in networking research. The most similar proposal

to TriScale is CONFIRM [50], a tool aiming to indicate how

many runs are required when running cloud experiments in

order to obtain CIs of a given size; e.g., ±1% of the empir-

ical median. CONFIRM uses the same statistical approach

to compute CIs as TriScale (see § 4.5) but it also requires

extensive domain-specific knowledge about cloud environ-

ments in order to predict the expected width for the CIs. By

contrast, TriScale is more general: it indicates, for any net-

working context, how many samples are required to compute

a CI, but it does not say anything about the expected interval

size, which can only be known a posteriori. Nevertheless,

it is naturally possible to specialize the methodology (e.g.,

different statistics, CI size targets, etc.) for specific contexts.

9 Conclusions

A consistent methodology for the design and analysis of exper-

iments is crucial for a more rigorous and replicable scientific

activity. In a prior workshop paper [39], we have argued

that such a methodology is of paramount importance for net-

working, which is especially challenged by the need to carry

out experiments in dynamic and uncontrollable conditions.

TriScale is the concrete realization of our vision into a tan-

gible framework: it implements a methodology grounded

on non-parametric statistics into a framework that aids re-

searchers in designing experiments and analyzing data. In

addition, TriScale improves the interpretability of results and

helps to quantify the replicability of experimental evaluations.

Beyond academic research, TriScale’s methodology may

be beneficial, e.g., for monitoring tasks performed daily by

network operators or, more generally, for any performance

evaluation run in a stochastic environment. We hope that

TriScale’s open availability and usability [36, 38] will fos-

ter better experimentation practices in the short term and

for the networking community at large. The quest towards

fully-replicable networking experiments remains open, but we

believe that TriScale represents an important stepping stone

towards an accepted standard for networking experiments.

Acknowledgement

It has been a long and bumpy road to get this work published;

there were many people who helped us along the way and that

we would like to thank. Hanspeter Schmid, for introducing

us to non-parametric statistics, providing code snippets to

implement the Thompson’s CI computation, and fruitful stat

discussions. The ETH statistical consulting team for their

time and advice, and—most importantly—confirming that we

were facing a non-trivial problem. Antonios Koskinas, Balz

Maag, Ramona Marfievici, and Usman Raza for their help and

brainstorming in the early stage of this project. Zimu Zhou,

Benjamin Friedrich, Jennifer Rexford, Ankit Singla, Olivier

16

https://puffer.stanford.edu/results/

Journal of Systems Research (JSys) 2021

Bonaventure, and Stefano Vissicchio for their feedback on ear-

lier versions of this manuscript. And finally, the NSDI’2020,

SIGCOMM’2020, SIGMETRICS’2021, and CCR reviewers

for their helpful and encouraging comments despite rejecting

the paper; in particular, we want to thank Damien Saucez

and Luigi Iannone for the engaging discussion and encour-

agements that followed our submission to CCR.

This work was supported in part by the German Research

Foundation (DFG) through the Emmy Noether project Nex-

tIoT (grant ZI 1635/2-1)

References

[1] ACM. Artifact Review and Badging, August

2020. URL: https://www.acm.org/publications/

policies/artifact-review-badging.

[2] Cedric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan

Harter, Nathalie Mitton, Thomas Noel, Roger Pissard-

Gibollet, Frederic Saint-Marcel, Guillaume Schreiner,

Julien Vandaele, and Thomas Watteyne. FIT IoT-LAB:

A large scale open experimental IoT testbed. In Pro-

ceedings of the 2015 IEEE 2nd World Forum on Internet

of Things (WF-IoT), pages 459–464, December 2015.

doi:10.1109/WF-IoT.2015.7389098.

[3] Shivang Aggarwal, Zhaoning Kong, Moinak Ghoshal,

Y. Charlie Hu, and Dimitrios Koutsonikolas. Through-

put Prediction on 60 GHz Mobile Devices for

High-Bandwidth, Latency-Sensitive Applications.

In Oliver Hohlfeld, Andra Lutu, and Dave Levin,

editors, Passive and Active Measurement, volume

12671, pages 513–528. Springer International

Publishing, Cham, 2021. URL: https://link.

springer.com/10.1007/978-3-030-72582-2_30,

doi:10.1007/978-3-030-72582-2_30.

[4] Angainor. Angainor – Reproducible Evaluation and

Fault Injection of Large-Scale Distributed Systems,

2020. URL: http://angainor.science/.

[5] Vaibhav Bajpai, Olivier Bonaventure, Kimberly

Claffy, and Daniel Karrenberg. Encouraging

Reproducibility in Scientific Research of the Inter-

net (Dagstuhl Seminar 18412). Dagstuhl Re-

ports, 8(10):41–62, 2019. URL: http://drops.

dagstuhl.de/opus/volltexte/2019/10347, doi:

10.4230/DagRep.8.10.41.

[6] Vaibhav Bajpai, Anna Brunstrom, Anja Feldmann,

Wolfgang Kellerer, Aiko Pras, Henning Schulzrinne,

Georgios Smaragdakis, Matthias Wählisch, and Klaus

Wehrle. The Dagstuhl Beginners Guide to Reproducibi-

lity for Experimental Networking Research. SIGCOMM

Computer Communication Review, 49(1):24–30, Jan-

uary 2019. URL: https://dl.acm.org/citation.

cfm?id=3314217.

[7] Monya Baker. Is There a Reproducibility Crisis?

Nature News, 533(7604):452–454, May 2016. URL:

https://www.nature.com/news/polopoly_fs/1.

19970!/menu/main/topColumns/topLeftColumn/

pdf/533452a.pdf.

[8] Arijit Banerjee, Junguk Cho, Eric Eide, Jonathon

Duerig, Binh Nguyen, Robert Ricci, Jacobus Van der

Merwe, Kirk Webb, and Gary Wong. PhantomNet:

Research Infrastructure for Mobile Networking, Cloud

Computing and Software-Defined Networking. Get-

Mobile: Mobile Computing and Communications Re-

view, 19(2):28–33, August 2015. URL: http://

doi.acm.org/10.1145/2817761.2817772, doi:10.

1145/2817761.2817772.

[9] Lorena A. Barba. Terminologies for Reproducible

Research. arXiv:1802.03311 [cs], February 2018.

URL: http://arxiv.org/abs/1802.03311, arXiv:

1802.03311.

[10] Stephanie R. Barbari, Daniel P. Kane, Elizabeth A.

Moore, and Polina V. Shcherbakova. Functional

Analysis of Cancer-Associated DNA Polymerase ε
Variants in Saccharomyces cerevisiae. G3: Genes,

Genomes, Genetics, 8(3):1019–1029, March 2018.

URL: https://www.g3journal.org/content/8/3/

1019, doi:10.1534/g3.118.200042.

[11] Mark Berman, Jeffrey S. Chase, Lawrence Landwe-

ber, Akihiro Nakao, Max Ott, Dipankar Raychaud-

huri, Robert Ricci, and Ivan Seskar. GENI:

A federated testbed for innovative network experi-

ments. Computer Networks, 61:5–23, March 2014.

URL: http://www.sciencedirect.com/science/

article/pii/S1389128613004507, doi:10.1016/

j.bjp.2013.12.037.

[12] Stephen M. Blackburn, Amer Diwan, Matthias

Hauswirth, Peter F. Sweeney, José Nelson Amaral, Tim

Brecht, Lubomír Bulej, Cliff Click, Lieven Eeckhout,

Sebastian Fischmeister, Daniel Frampton, Laurie J. Hen-

dren, Michael Hind, Antony L. Hosking, Richard E.

Jones, Tomas Kalibera, Nathan Keynes, Nathaniel Nys-

trom, and Andreas Zeller. The Truth, The Whole

Truth, and Nothing But the Truth: A Pragmatic Guide

to Assessing Empirical Evaluations. ACM Transactions

on Programming Languages and Systems, 38(4):15:1–

15:20, October 2016. URL: http://doi.acm.org/

10.1145/2983574, doi:10.1145/2983574.

[13] Carlo A. Boano, Simon Duquennoy, Anna Förster,

Omprakash Gnawali, Romain Jacob, Hyung-Sin

17

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1109/WF-IoT.2015.7389098
https://link.springer.com/10.1007/978-3-030-72582-2_30
https://link.springer.com/10.1007/978-3-030-72582-2_30
https://doi.org/10.1007/978-3-030-72582-2_30
http://angainor.science/
http://drops.dagstuhl.de/opus/volltexte/2019/10347
http://drops.dagstuhl.de/opus/volltexte/2019/10347
https://doi.org/10.4230/DagRep.8.10.41
https://doi.org/10.4230/DagRep.8.10.41
https://dl.acm.org/citation.cfm?id=3314217
https://dl.acm.org/citation.cfm?id=3314217
https://www.nature.com/news/polopoly_fs/1.19970!/menu/main/topColumns/topLeftColumn/pdf/533452a.pdf
https://www.nature.com/news/polopoly_fs/1.19970!/menu/main/topColumns/topLeftColumn/pdf/533452a.pdf
https://www.nature.com/news/polopoly_fs/1.19970!/menu/main/topColumns/topLeftColumn/pdf/533452a.pdf
http://doi.acm.org/10.1145/2817761.2817772
http://doi.acm.org/10.1145/2817761.2817772
https://doi.org/10.1145/2817761.2817772
https://doi.org/10.1145/2817761.2817772
http://arxiv.org/abs/1802.03311
http://arxiv.org/abs/1802.03311
http://arxiv.org/abs/1802.03311
https://www.g3journal.org/content/8/3/1019
https://www.g3journal.org/content/8/3/1019
https://doi.org/10.1534/g3.118.200042
http://www.sciencedirect.com/science/article/pii/S1389128613004507
http://www.sciencedirect.com/science/article/pii/S1389128613004507
https://doi.org/10.1016/j.bjp.2013.12.037
https://doi.org/10.1016/j.bjp.2013.12.037
http://doi.acm.org/10.1145/2983574
http://doi.acm.org/10.1145/2983574
https://doi.org/10.1145/2983574

Journal of Systems Research (JSys) 2021

Kim, Olaf Landsiedel, Ramona Marfievici, Luca

Mottola, Gian Pietro Picco, Xavier Vilajosana,

Thomas Watteyne, and Marco Zimmerling. IoT-

Bench: Towards a Benchmark for Low-power Wire-

less Networking. In Proceedings of the 1st

Workshop on Benchmarking Cyber-Physical Net-

works and Systems (CPSBench 2018), April 2018.

URL: https://www.research-collection.ethz.

ch/handle/20.500.11850/256517, doi:10.3929/

ethz-b-000256517.

[14] Ronald F. Boisvert. Incentivizing Reproducibility. Com-

munications of the ACM, 59(10):5–5, September 2016.

URL: https://cacm.acm.org/magazines/2016/

10/207757-incentivizing-reproducibility/

fulltext, doi:10.1145/2994031.

[15] Raphaël Bolze et al. Grid’5000: A Large Scale And

Highly Reconfigurable Experimental Grid Testbed. In-

ternational Journal of High Performance Computing

Applications, 20(4):481–494, November 2006. URL:

https://hal.inria.fr/hal-00684943.

[16] Olivier Bonaventure, Luigi Iannone, and Damien

Saucez, editors. Proceedings of the International

ACM SIGCOMM Reproducibility Workshop. Repro-

ducibility’17. ACM, Los Angeles, CA, USA, August

2017. URL: https://dl.acm.org/citation.cfm?

id=3097766.

[17] Peter J. Brockwell, Richard A. Davis, and Stephen E.

Fienberg. Time Series: Theory and Methods. Springer

Science & Business Media, 1991. doi:10.1007/

978-1-4419-0320-4.

[18] Ryan Burchfield, Ehsan Nourbakhsh, Jeff Dix, Kunal

Sahu, S. Venkatesan, and Ravi Prakash. RF in the Jun-

gle: Effect of Environment Assumptions on Wireless

Experiment Repeatability. In Proceedings of the Inter-

national Conference on Communications (ICC), pages

1–6. IEEE, June 2009. URL: https://ehsaan.net/

wp-content/uploads/publications/rfij.pdf.

[19] CAIDA. CAIDA Internet Data – Passive Data

Sources, 2021. URL: https://www.caida.org/

data/passive/index.xml.

[20] Junguk Cho, Jonathan Duerig, Eric Eide, Binh Nguyen,

Robert Ricci, Aisha Syed, Jacobus Van der Merwe,

Kirk Webb, and Gary Wong. Repeatable mobile

networking research with phantomNet: Demo. In

Proceedings of the 22nd Annual International Con-

ference on Mobile Computing and Networking - Mo-

biCom ’16, pages 489–490, New York City, New

York, 2016. ACM Press. URL: http://dl.acm.

org/citation.cfm?doid=2973750.2985616, doi:

10.1145/2973750.2985616.

[21] Kenjiro Cho, Koushirou Mitsuya, and Akira Kato. Traf-

fic data repository at the WIDE project. In Proceedings

of the Annual Conference on USENIX Annual Technical

Conference, ATEC ’00, page 51, San Diego, California,

June 2000. USENIX Association.

[22] Brent Chun, David Culler, Timothy Roscoe, Andy

Bavier, Larry Peterson, Mike Wawrzoniak, and Mic

Bowman. PlanetLab: An Overlay Testbed for Broad-

coverage Services. SIGCOMM Computer Communi-

cation Review, 33(3):3–12, July 2003. URL: http:

//doi.acm.org/10.1145/956993.956995, doi:10.

1145/956993.956995.

[23] Christian Collberg, Todd Proebsting, and Alex M.

Warren. Repeatability and Benefaction in Com-

puter Systems Research. Technical Report

TR 14–04, University of Arizona, February 2015.

URL: http://reproducibility.cs.arizona.edu/

v2/RepeatabilityTR.pdf.

[24] Geoff Cumming and Sue Finch. A Primer on the Un-

derstanding, Use, and Calculation of Confidence In-

tervals that are Based on Central and Noncentral Dis-

tributions. Educational and Psychological Measure-

ment, 61(4):532–574, August 2001. URL: https:

//doi.org/10.1177/0013164401614002.

[25] Herbert A. David and Haikady N. Nagaraja. Or-

der Statistics in Nonparametric Inference. In Order

Statistics, pages 159–170. John Wiley & Sons, Ltd,

2005. URL: https://onlinelibrary.wiley.com/

doi/abs/10.1002/0471722162.ch7, doi:10.1002/

0471722162.ch7.

[26] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-

icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh

Stoller, Mike Hibler, David Johnson, Kirk Webb,

Aditya Akella, Kuangching Wang, Glenn Ricart,

Larry Landweber, Chip Elliott, Michael Zink, Em-

manuel Cecchet, Snigdhaswin Kar, and Prabodh

Mishra. The Design and Operation of Cloud-

Lab. In Proceedings of the 2019 USENIX An-

nual Technical Conference (USENIX ATC 19), pages

1–14, 2019. URL: https://www.usenix.org/

conference/atc19/presentation/duplyakin.

[27] Sarah Edwards, Xuan Liu, and Niky Riga. Creating

Repeatable Computer Science and Networking Experi-

ments on Shared, Public Testbeds. ACM SIGOPS Oper-

ating Systems Review, 49(1):90–99, January 2015. URL:

http://doi.acm.org/10.1145/2723872.2723884.

[28] Federico Ferrari, Marco Zimmerling, Lothar Thiele,

and Olga Saukh. Efficient network flooding and time

synchronization with Glossy. In Proceedings of the

18

https://www.research-collection.ethz.ch/handle/20.500.11850/256517
https://www.research-collection.ethz.ch/handle/20.500.11850/256517
https://doi.org/10.3929/ethz-b-000256517
https://doi.org/10.3929/ethz-b-000256517
https://cacm.acm.org/magazines/2016/10/207757-incentivizing-reproducibility/fulltext
https://cacm.acm.org/magazines/2016/10/207757-incentivizing-reproducibility/fulltext
https://cacm.acm.org/magazines/2016/10/207757-incentivizing-reproducibility/fulltext
https://doi.org/10.1145/2994031
https://hal.inria.fr/hal-00684943
https://dl.acm.org/citation.cfm?id=3097766
https://dl.acm.org/citation.cfm?id=3097766
https://doi.org/10.1007/978-1-4419-0320-4
https://doi.org/10.1007/978-1-4419-0320-4
https://ehsaan.net/wp-content/uploads/publications/rfij.pdf
https://ehsaan.net/wp-content/uploads/publications/rfij.pdf
https://www.caida.org/data/passive/index.xml
https://www.caida.org/data/passive/index.xml
http://dl.acm.org/citation.cfm?doid=2973750.2985616
http://dl.acm.org/citation.cfm?doid=2973750.2985616
https://doi.org/10.1145/2973750.2985616
https://doi.org/10.1145/2973750.2985616
http://doi.acm.org/10.1145/956993.956995
http://doi.acm.org/10.1145/956993.956995
https://doi.org/10.1145/956993.956995
https://doi.org/10.1145/956993.956995
http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf
http://reproducibility.cs.arizona.edu/v2/RepeatabilityTR.pdf
https://doi.org/10.1177/0013164401614002
https://doi.org/10.1177/0013164401614002
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471722162.ch7
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471722162.ch7
https://doi.org/10.1002/0471722162.ch7
https://doi.org/10.1002/0471722162.ch7
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://www.usenix.org/conference/atc19/presentation/duplyakin
http://doi.acm.org/10.1145/2723872.2723884

Journal of Systems Research (JSys) 2021

10th ACM/IEEE International Conference on Infor-

mation Processing in Sensor Networks, pages 73–84,

April 2011. URL: https://ieeexplore.ieee.org/

document/5779066.

[29] Matthias Flittner, Mohamed Naoufal Mahfoudi, Damien

Saucez, Matthias Wählisch, Luigi Iannone, Vaibhav

Bajpai, and Alex Afanasyev. A Survey on Artifacts

from CoNEXT, ICN, IMC, and SIGCOMM Confer-

ences in 2017. SIGCOMM Computer Communica-

tion Review, 48(1):75–80, April 2018. URL: http://

doi.acm.org/10.1145/3211852.3211864, doi:10.

1145/3211852.3211864.

[30] C. Galán, Matt Smith, M. Thibaudon, G. Frenguelli,

J. Oteros, R. Gehrig, U. Berger, B. Clot, R. Brandao,

and EAS QC Working Group. Pollen monitoring:

Minimum requirements and reproducibility of analy-

sis. Aerobiologia, 30(4):385–395, December 2014.

doi:10.1007/s10453-014-9335-5.

[31] Sachin Ganu, Haris Kremo, Richard Howard, and Ivan

Seskar. Addressing Repeatability in Wireless Ex-

periments Using ORBIT Testbed. In Proceedings

of the 1st International Conference on Testbeds and

Research Infrastructures for the Development of Net-

works and Communities (TRIDENTCOM), pages 153–

160, Trento, Italy, February 2005. IEEE Computer

Society. URL: https://ieeexplore.ieee.org/

document/1386191.

[32] Omprakash Gnawali, Marco Zimmerling, and Sebastian

Trimpe, editors. Proceedings of the 1st International

Workshop on Benchmarking Cyber-Physical Networks

and Systems (CPSBench). IEEE, Porto, Portugal, April

2018. URL: https://doi.org/10.1109/CPSBench.

2018.00004.

[33] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyaku-

mar, Bob Lantz, and Nick McKeown. Reproducible

Network Experiments Using Container-Based Emula-

tion. In Proceedings of the 8th International Conference

on Emerging Networking Experiments and Technologies

(CoNEXT), pages 253–264, Nice, France, December

2012. ACM. URL: http://tiny-tera.stanford.

edu/~nickm/papers/p253.pdf.

[34] Thomas Holterbach, Tobias Bühler, Tino Rell-

stab, and Laurent Vanbever. An Open Plat-

form to Teach How the Internet Practically Works.

ACM SIGCOMM Computer Communication Review,

50(2):45–52, May 2020. URL: https://dl.

acm.org/doi/10.1145/3402413.3402420, doi:10.

1145/3402413.3402420.

[35] Thomas Holterbach, Edgar Costa Molero, Maria Apos-

tolaki, Alberto Dainotti, Stefano Vissicchio, and Lau-

rent Vanbever. Blink: Fast Connectivity Recov-

ery Entirely in the Data Plane. In Proceedings

of the 16th USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI 19), pages

161–176, 2019. URL: https://www.usenix.org/

conference/nsdi19/presentation/holterbach.

[36] Romain Jacob. TriScale, 2021. URL: https:

//github.com/romain-jacob/triscale.

[37] Romain Jacob. TriScale Artifacts, 2021. URL: https:

//doi.org/10.5281/zenodo.3451417.

[38] Romain Jacob. TriScale Demo, June 2021. URL:

http://triscale.ethz.ch.

[39] Romain Jacob, Carlo Alberto Boano, Usman Raza,

Marco Zimmerling, and Lothar Thiele. Towards

a Methodology for Experimental Evaluation in Low-

Power Wireless Networking. In Proceedings of the 2nd

Workshop on Benchmarking Cyber-Physical Systems

and Internet of Things (CPS-IoTBench’19), April 2019.

URL: https://www.research-collection.ethz.

ch/handle/20.500.11850/325096, doi:10.3929/

ethz-b-000325096.

[40] Romain Jacob, Reto Da Forno, Roman Trüb, Andreas

Biri, and Lothar Thiele. Dataset: Wireless Link Quality

Estimation on FlockLab – and Beyond. In Proceedings

of the 2nd International Workshop on Data Acquisition

to Analysis (DATA), New York, NY, USA, November

2019. ACM. doi:10.3929/ethz-b-000355846.

[41] Project Jupyter, Matthias Bussonnier, Jessica Forde,

Jeremy Freeman, Brian Granger, Tim Head, Chris

Holdgraf, Kyle Kelley, Gladys Nalvarte, Andrew

Osheroff, M. Pacer, Yuvi Panda, Fernando Perez,

Benjamin Ragan-Kelley, and Carol Willing. Binder

2.0 - Reproducible, interactive, sharable environ-

ments for science at scale. In Proceedings of the

17th Python in Science Conference, pages 113–120,

2018. URL: https://conference.scipy.org/

proceedings/scipy2018/project_jupyter.html,

doi:10.25080/Majora-4af1f417-011.

[42] Pravein Govindan Kannan, Ahmad Soltani, Mun Choon

Chan, and Ee-Chien Chang. BNV: Enabling Scal-

able Network Experimentation throughBare-metal Net-

work Virtualization. In Proceedings of the 11th

USENIX Conference on Cyber Security Experimenta-

tion and Test (CSET). USENIX Association, August

2018. URL: http://dl.acm.org/citation.cfm?

id=3307412.3307418.

[43] Teemu Koponen, Keith Amidon, Peter Balland,

Martín Casado, Anupam Chanda, Bryan Fulton, Igor

Ganichev, Jesse Gross, Paul Ingram, Ethan Jackson,

19

https://ieeexplore.ieee.org/document/5779066
https://ieeexplore.ieee.org/document/5779066
http://doi.acm.org/10.1145/3211852.3211864
http://doi.acm.org/10.1145/3211852.3211864
https://doi.org/10.1145/3211852.3211864
https://doi.org/10.1145/3211852.3211864
https://doi.org/10.1007/s10453-014-9335-5
https://ieeexplore.ieee.org/document/1386191
https://ieeexplore.ieee.org/document/1386191
https://doi.org/10.1109/CPSBench.2018.00004
https://doi.org/10.1109/CPSBench.2018.00004
http://tiny-tera.stanford.edu/~nickm/papers/p253.pdf
http://tiny-tera.stanford.edu/~nickm/papers/p253.pdf
https://dl.acm.org/doi/10.1145/3402413.3402420
https://dl.acm.org/doi/10.1145/3402413.3402420
https://doi.org/10.1145/3402413.3402420
https://doi.org/10.1145/3402413.3402420
https://www.usenix.org/conference/nsdi19/presentation/holterbach
https://www.usenix.org/conference/nsdi19/presentation/holterbach
https://github.com/romain-jacob/triscale
https://github.com/romain-jacob/triscale
https://doi.org/10.5281/zenodo.3451417
https://doi.org/10.5281/zenodo.3451417
http://triscale.ethz.ch
https://www.research-collection.ethz.ch/handle/20.500.11850/325096
https://www.research-collection.ethz.ch/handle/20.500.11850/325096
https://doi.org/10.3929/ethz-b-000325096
https://doi.org/10.3929/ethz-b-000325096
https://doi.org/10.3929/ethz-b-000355846
https://conference.scipy.org/proceedings/scipy2018/project_jupyter.html
https://conference.scipy.org/proceedings/scipy2018/project_jupyter.html
https://doi.org/10.25080/Majora-4af1f417-011
http://dl.acm.org/citation.cfm?id=3307412.3307418
http://dl.acm.org/citation.cfm?id=3307412.3307418

Journal of Systems Research (JSys) 2021

Andrew Lambeth, Romain Lenglet, Shih-Hao Li,

Amar Padmanabhan, Justin Pettit, Ben Pfaff, Rajiv

Ramanathan, Scott Shenker, Alan Shieh, Jeremy

Stribling, Pankaj Thakkar, Dan Wendlandt, Alexander

Yip, and Ronghua Zhang. Network Virtualization in

Multi-tenant Datacenters. In Proceedings of the 11th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI 14), pages 203–216, 2014. URL:

https://www.usenix.org/conference/nsdi14/

technical-sessions/presentation/koponen.

[44] K. Kritsis, G. Z. Papadopoulos, A. Gallais, P. Chatz-

imisios, and F. Théoleyre. A Tutorial on Perfor-

mance Evaluation and Validation Methodology

for Low-Power and Lossy Networks. IEEE

Communications Surveys Tutorials, pages 1–1,

2018. URL: https://icube-publis.unistra.

fr/docs/13111/IEEECOMST-Perf-LLN.pdf,

doi:10.1109/COMST.2018.2820810.

[45] Daniël Lakens. Equivalence Tests: A Practical

Primer for t Tests, Correlations, and Meta-Analyses.

Social Psychological and Personality Science,

8(4):355–362, May 2017. URL: https://www.

ncbi.nlm.nih.gov/pmc/articles/PMC5502906/,

doi:10.1177/1948550617697177.

[46] Jean-Yves Le Boudec. Performance Evaluation of

Computer and Communication Systems. Computer and

Communication Sciences. EPFL Press, Lausanne, 1. ed

edition, 2010.

[47] Roman Lim, Federico Ferrari, Marco Zimmerling,

Christoph Walser, Philipp Sommer, and Jan Beu-

tel. FlockLab: A Testbed for Distributed, Syn-

chronized Tracing and Profiling of Wireless Embed-

ded Systems. In Proceedings of the 12th Interna-

tional Conference on Information Processing in Sen-

sor Networks, IPSN’13, pages 153–166, New York,

NY, USA, April 2013. ACM. URL: http://

doi.acm.org/10.1145/2461381.2461402, doi:10.

1145/2461381.2461402.

[48] David M. Liu and Matthew J. Salganik. Suc-

cesses and Struggles with Computational Reproduci-

bility: Lessons from the Fragile Families Challenge.

Technical report, OSF.io, March 2019. URL: https:

//osf.io/preprints/socarxiv/g3pdb/.

[49] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.

Neural Adaptive Video Streaming with Pensieve. In

Proceedings of the Conference of the ACM Special In-

terest Group on Data Communication, SIGCOMM’17,

pages 197–210, Los Angeles, CA, USA, August 2017.

Association for Computing Machinery. doi:10.1145/

3098822.3098843.

[50] Aleksander Maricq, Dmitry Duplyakin, Ivo Jimenez,

Carlos Maltzahn, Ryan Stutsman, and Robert Ricci.

Taming Performance Variability. In Proceedings of the

13th International USENIX Symposium on Operating

Systems Design and Implementation (OSDI), pages 409–

425, Carlsbad, CA, USA, October 2018. USENIX As-

sociation. URL: https://www.usenix.org/system/

files/osdi18-maricq.pdf.

[51] Celso Martinho and Tom Strickx. Understanding

How Facebook Disappeared from the Internet, Octo-

ber 2021. URL: https://blog.cloudflare.com/

october-2021-facebook-outage/.

[52] Abdelbassat Massouri, Leonardo Cardoso, Benjamin

Guillon, Florin Hutu, Guillaume Villemaud, Tanguy Ris-

set, and Jean-Marie Gorce. CorteXlab: An open FPGA-

based Facility for Testing SDR and Cognitive Radio Net-

works in a Reproducible Environment. In Proceedings

of the International Conference on Computer Communi-

cations (INFOCOM) Workshops, pages 103–104, San

Francisco, CA, USA, April 2014. IEEE. URL: https:

//ieeexplore.ieee.org/document/6849176.

[53] Miguel Matos. Towards Reproducible Evalua-

tion of Large-Scale Distributed Systems. In Pro-

ceedings of the International Workshop on Advanced

Tools, Programming Languages, and Platforms for

Implementing and Evaluating Algorithms for Dis-

tributed Systems (ApPLIED), pages 5–7, Egham, United

Kingdom, July 2018. ACM. URL: http://

doi.acm.org/10.1145/3231104.3231113, doi:10.

1145/3231104.3231113.

[54] Micro Focus. Seven Ways to Fail. Tech-

nical Report Brochure on Application Develop-

ment, Test, and Delivery, Micro Focus, March

2018. URL: https://www.microfocus.com/media/

brochure/seven_ways_to_fail_brochure.pdf.

[55] Ravi Netravali, Anirudh Sivaraman, Somak Das,

Ameesh Goyal, Keith Winstein, James Mickens,

and Hari Balakrishnan. Mahimahi: Accu-

rate Record-and-Replay for HTTP. In Proceed-

ings of the International USENIX Annual Techni-

cal Conference (ATC), pages 417–429, Santa Clara,

CA, USA, July 2015. USENIX Association.

URL: https://www.usenix.org/system/files/

conference/atc15/atc15-paper-netravali.pdf.

[56] Numpy. NumPy: The Fundamental Package for Sci-

entific Computing with Python, 2021. URL: https:

//numpy.org/.

[57] Lucas Nussbaum. Testbeds Support for Repro-

ducible Research. In Proceedings of the Inter-

national ACM SIGCOMM Reproducibility Workshop,

20

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/koponen
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/koponen
https://icube-publis.unistra.fr/docs/13111/IEEECOMST-Perf-LLN.pdf
https://icube-publis.unistra.fr/docs/13111/IEEECOMST-Perf-LLN.pdf
https://doi.org/10.1109/COMST.2018.2820810
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5502906/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5502906/
https://doi.org/10.1177/1948550617697177
http://doi.acm.org/10.1145/2461381.2461402
http://doi.acm.org/10.1145/2461381.2461402
https://doi.org/10.1145/2461381.2461402
https://doi.org/10.1145/2461381.2461402
https://osf.io/preprints/socarxiv/g3pdb/
https://osf.io/preprints/socarxiv/g3pdb/
https://doi.org/10.1145/3098822.3098843
https://doi.org/10.1145/3098822.3098843
https://www.usenix.org/system/files/osdi18-maricq.pdf
https://www.usenix.org/system/files/osdi18-maricq.pdf
https://blog.cloudflare.com/october-2021-facebook-outage/
https://blog.cloudflare.com/october-2021-facebook-outage/
https://ieeexplore.ieee.org/document/6849176
https://ieeexplore.ieee.org/document/6849176
http://doi.acm.org/10.1145/3231104.3231113
http://doi.acm.org/10.1145/3231104.3231113
https://doi.org/10.1145/3231104.3231113
https://doi.org/10.1145/3231104.3231113
https://www.microfocus.com/media/brochure/seven_ways_to_fail_brochure.pdf
https://www.microfocus.com/media/brochure/seven_ways_to_fail_brochure.pdf
https://www.usenix.org/system/files/conference/atc15/atc15-paper-netravali.pdf
https://www.usenix.org/system/files/conference/atc15/atc15-paper-netravali.pdf
https://numpy.org/
https://numpy.org/

Journal of Systems Research (JSys) 2021

Reproducibility’17, pages 24–26, Los Angeles, CA,

USA, August 2017. ACM. URL: https://hal.

inria.fr/hal-01577849/document, doi:10.1145/

3097766.3097773.

[58] Pantheon. Pantheon, 2018. URL: https://pantheon.

stanford.edu/.

[59] Vern Paxson. Strategies for sound internet measure-

ment. In Proceedings of the 4th ACM SIGCOMM

Conference on Internet Measurement, IMC ’04, pages

263–271, Taormina, Sicily, Italy, October 2004. As-

sociation for Computing Machinery. doi:10.1145/

1028788.1028824.

[60] Roger Peng. The Reproducibility Crisis in Science:

A Statistical Counterattack. Significance, 12(3):30–

32, June 2015. URL: https://doi.org/10.1111/j.

1740-9713.2015.00827.x.

[61] Hans E. Plesser. Reproducibility vs. Replicability: A

Brief History of a Confused Terminology. Frontiers

in Neuroinformatics, 11(76):1–4, January 2018. URL:

https://doi.org/10.1177/1948550617697177.

[62] Plotly. Plotly: Modern Analytic Apps for the Enterprise,

2021. URL: https://plot.ly.

[63] Robert Ricci, Jonathon Duerig, Pramod Sanaga, Daniel

Gebhardt, Mike Hibler, Kevin Atkinson, Junxing Zhang,

Sneha Kasera, and Jay Lepreau. The Flexlab Approach

to Realistic Evaluation of Networked Systems. In Pro-

ceedings of the 4th USENIX Conference on Networked

Systems Design & Implementation, NSDI’07, pages 15–

15, Cambridge, MA, USA, April 2007. USENIX As-

sociation. URL: https://www.cs.utah.edu/flux/

papers/flexlab-nsdi07.pdf.

[64] Robert Ricci, Gary Wong, Leigh Stoller, Kirk

Webb, Jonathon Duerig, Keith Downie, and Mike

Hibler. Apt: A Platform for Repeatable Re-

search in Computer Science. ACM SIGOPS Op-

erating Systems Review, 2015. URL: http://

doi.acm.org/10.1145/2723872.2723885, doi:10.

1145/2723872.2723885.

[65] Damien Saucez and Luigi Iannone. Thoughts and

Recommendations from the ACM SIGCOMM 2017

Reproducibility Workshop. SIGCOMM Computer

Communication Review, 48(1):70–74, April 2018. URL:

https://ccronline.sigcomm.org/wp-content/

uploads/2017/11/sigcomm-ccr-paper149.pdf,

doi:10.1145/3211852.3211863.

[66] Hanspeter Schmid and Alex Huber. Measuring a Small

Number of Samples, and the 3σ Fallacy: Shedding Light

on Confidence and Error Intervals. IEEE Solid-State Cir-

cuits Magazine, 6(2):52–58, June 2014. URL: https:

//ieeexplore.ieee.org/document/6841797, doi:

10.1109/MSSC.2014.2313714.

[67] Markus Schuß, Carlo Alberto Boano, and Kay Römer.

Moving Beyond Competitions: Extending D-Cube

to Seamlessly Benchmark Low-Power Wireless Sys-

tems. In Proceedings of the 1st International

Workshop on Benchmarking Cyber-Physical Networks

and Systems (CPSBench), page 6. IEEE, April

2018. URL: http://www.carloalbertoboano.

com/documents/schuss18benchmark.pdf, doi:10.

1109/CPSBench.2018.00012.

[68] Markus Schuß, Carlo Alberto Boano, Manuel Weber,

and Kay Römer. A Competition to Push the Depend-

ability of Low-Power Wireless Protocols to the Edge.

In Proceedings of the 14th International Conference on

Embedded Wireless Systems and Networks, EWSN’17,

pages 54–65, USA, February 2017. Junction Publishing.

doi:10.5555/3108009.3108018.

[69] Markus Schuß, Carlo Alberto Boano, Manuel Weber,

Matthias Schulz, Matthias Hollick, and Kay Römer.

JamLab-NG: Benchmarking Low-Power Wireless Pro-

tocols under Controllable and Repeatable Wi-Fi Inter-

ference. In Proceedings of the 16th International Con-

ference on Embedded Wireless Systems and Networks,

EWSN ’19, pages 83–94, Beijing, China, March 2019.

Junction Publishing. URL: https://dl.acm.org/

doi/abs/10.5555/3324320.3324331.

[70] Pranab Kumar Sen. Estimates of the Regression Coef-

ficient Based on Kendall’s Tau. Journal of the Ameri-

can Statistical Association, 63(324):1379–1389, Decem-

ber 1968. URL: https://www.tandfonline.com/

doi/abs/10.1080/01621459.1968.10480934, doi:

10.1080/01621459.1968.10480934.

[71] Piyush Shivam, Varun Marupadi, Jeff Chase, Thileepan

Subramaniam, and Shivnath Babu. Cutting Cor-

ners: Workbench Automation for Server Benchmarking.

page 14, 2008.

[72] Hajime Tazaki, Frédéric Uarbani, Emilio Mancini,

Mathieu Lacage, Daniel Camara, Thierry Turletti, and

Walid Dabbous. Direct Code Execution: Revisiting

Library OS Architecture for Reproducible Network Ex-

periments. In Proceedings of the 9th International Con-

ference on Emerging Networking Experiments and Tech-

nologies (CoNEXT), CoNEXT’13, pages 217–228, New

York, NY, USA, December 2013. ACM. URL: https:

//hal.inria.fr/hal-00880870v1/document, doi:

10.1145/2535372.2535374.

[73] Henri Theil. A Rank-Invariant Method of Linear

and Polynomial Regression Analysis. In Baldev Raj

21

https://hal.inria.fr/hal-01577849/document
https://hal.inria.fr/hal-01577849/document
https://doi.org/10.1145/3097766.3097773
https://doi.org/10.1145/3097766.3097773
https://pantheon.stanford.edu/
https://pantheon.stanford.edu/
https://doi.org/10.1145/1028788.1028824
https://doi.org/10.1145/1028788.1028824
https://doi.org/10.1111/j.1740-9713.2015.00827.x
https://doi.org/10.1111/j.1740-9713.2015.00827.x
https://doi.org/10.1177/1948550617697177
https://plot.ly
https://www.cs.utah.edu/flux/papers/flexlab-nsdi07.pdf
https://www.cs.utah.edu/flux/papers/flexlab-nsdi07.pdf
http://doi.acm.org/10.1145/2723872.2723885
http://doi.acm.org/10.1145/2723872.2723885
https://doi.org/10.1145/2723872.2723885
https://doi.org/10.1145/2723872.2723885
https://ccronline.sigcomm.org/wp-content/uploads/2017/11/sigcomm-ccr-paper149.pdf
https://ccronline.sigcomm.org/wp-content/uploads/2017/11/sigcomm-ccr-paper149.pdf
https://doi.org/10.1145/3211852.3211863
https://ieeexplore.ieee.org/document/6841797
https://ieeexplore.ieee.org/document/6841797
https://doi.org/10.1109/MSSC.2014.2313714
https://doi.org/10.1109/MSSC.2014.2313714
http://www.carloalbertoboano.com/documents/schuss18benchmark.pdf
http://www.carloalbertoboano.com/documents/schuss18benchmark.pdf
https://doi.org/10.1109/CPSBench.2018.00012
https://doi.org/10.1109/CPSBench.2018.00012
https://doi.org/10.5555/3108009.3108018
https://dl.acm.org/doi/abs/10.5555/3324320.3324331
https://dl.acm.org/doi/abs/10.5555/3324320.3324331
https://www.tandfonline.com/doi/abs/10.1080/01621459.1968.10480934
https://www.tandfonline.com/doi/abs/10.1080/01621459.1968.10480934
https://doi.org/10.1080/01621459.1968.10480934
https://doi.org/10.1080/01621459.1968.10480934
https://hal.inria.fr/hal-00880870v1/document
https://hal.inria.fr/hal-00880870v1/document
https://doi.org/10.1145/2535372.2535374
https://doi.org/10.1145/2535372.2535374

Journal of Systems Research (JSys) 2021

and Johan Koerts, editors, Henri Theil’s Contribu-

tions to Economics and Econometrics: Econometric

Theory and Methodology, Advanced Studies in The-

oretical and Applied Econometrics, pages 345–381.

Springer Netherlands, Dordrecht, 1992. doi:10.1007/

978-94-011-2546-8_20.

[74] William R. Thompson. On Confidence Ranges for the

Median and Other Expectation Distributions for Pop-

ulations of Unknown Distribution Form. The Annals

of Mathematical Statistics, 7(3):122–128, 1936. URL:

https://www.jstor.org/stable/2957563.

[75] Alexandru Uta, Alexandru Custura, Dmitry Duplyakin,

Ivo Jimenez, Jan Rellermeyer, Carlos Maltzahn, Robert

Ricci, and Alexandru Iosup. Is Big Data Performance

Reproducible in Modern Cloud Networks? In Pro-

ceedings of the 17th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 20), pages

513–527, 2020. URL: https://www.usenix.org/

conference/nsdi20/presentation/uta.

[76] Jan Vitek and Tomas Kalibera. Repeatability, Repro-

ducibility and Rigor in Systems Research. In Proceed-

ings of the 9th International Conference on Embedded

Software (EMSOFT), pages 33–38. ACM, October

2011. URL: https://www.cs.kent.ac.uk/pubs/

2011/3174/content.pdf.

[77] Xiao Sophia Wang, Aruna Balasubramanian, Arvind

Krishnamurthy, and David Wetherall. How Speedy is

{SPDY}? In 11th {USENIX} Symposium on Networked

Systems Design and Implementation ({NSDI} 14), pages

387–399, 2014. URL: https://www.usenix.org/

conference/nsdi14/technical-sessions/wang.

[78] Ronald L. Wasserstein, Allen L. Schirm, and Nicole A.

Lazar. Moving to a World Beyond “p < 0.05”.

The American Statistician, 73(sup1):1–19, March 2019.

doi:10.1080/00031305.2019.1583913.

[79] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci,

Shashi Guruprasad, Mac Newbold, Mike Hibler, Chad

Barb, and Abhijeet Joglekar. An Integrated Experimen-

tal Environment for Distributed Systems and Networks.

ACM SIGOPS Operating Systems Review, 36(SI):255–

270, December 2002. URL: http://doi.acm.org/

10.1145/844128.844152.

[80] Wikipedia. Kruskal–Wallis one-way analysis of

variance. Wikipedia, December 2019. URL:

https://en.wikipedia.org/w/index.php?title=

Kruskal%E2%80%93Wallis_one-way_analysis_of_

variance&oldid=930537699.

[81] Wikipedia. One-way analysis of variance. Wikipedia,

December 2019. URL: https://en.wikipedia.

org/w/index.php?title=One-way_analysis_of_

variance&oldid=931491661.

[82] Wikipedia. Theil–Sen estimator. Wikipedia, July 2019.

URL: https://en.wikipedia.org/w/index.php?

title=Theil%E2%80%93Sen_estimator&oldid=

906073990.

[83] Wikipedia. Central limit theorem. Wikipedia,

January 2020. URL: https://en.wikipedia.org/

w/index.php?title=Central_limit_theorem&

oldid=937666343.

[84] Wikipedia. Mahalanobis distance. Wikipedia,

August 2021. URL: https://en.wikipedia.org/w/

index.php?title=Mahalanobis_distance&oldid=

1036769660.

[85] Wikipedia. Separation of concerns. Wikipedia,

January 2021. URL: https://en.wikipedia.org/

w/index.php?title=Separation_of_concerns&

oldid=1001182339.

[86] Francis Y. Yan, Hudson Ayers, Chenzhi Zhu,

Sadjad Fouladi, James Hong, Keyi Zhang, Philip

Levis, and Keith Winstein. Learning in situ: A

randomized experiment in video streaming. In

17th USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI 20), pages 495–

511, 2020. URL: https://www.usenix.org/

conference/nsdi20/presentation/yan.

[87] Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Ragha-

van, Riad S. Wahby, Philip Levis, and Keith Winstein.

Pantheon: The Training Ground for Internet Congestion-

control Research. In Proceedings of the International

USENIX Annual Technical Conference (ATC), pages

731–743, Boston, MA, USA, July 2018. USENIX

Association. URL: https://www.usenix.org/

conference/atc18/presentation/yan-francis.

[88] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno

Sinopoli. A Control-Theoretic Approach for Dynamic

Adaptive Video Streaming over HTTP. In Proceed-

ings of the 2015 ACM Conference on Special Inter-

est Group on Data Communication, SIGCOMM ’15,

pages 325–338, London, United Kingdom, August

2015. Association for Computing Machinery. doi:

10.1145/2785956.2787486.

[89] Xiao Zhu, Subhabrata Sen, and Z. Morley Mao. Live-

lyzer: Analyzing the first-mile ingest performance of

live video streaming. In Proceedings of the 12th ACM

Multimedia Systems Conference, MMSys ’21, pages

36–50, New York, NY, USA, July 2021. Association

for Computing Machinery. doi:10.1145/3458305.

3463375.

22

https://doi.org/10.1007/978-94-011-2546-8_20
https://doi.org/10.1007/978-94-011-2546-8_20
https://www.jstor.org/stable/2957563
https://www.usenix.org/conference/nsdi20/presentation/uta
https://www.usenix.org/conference/nsdi20/presentation/uta
https://www.cs.kent.ac.uk/pubs/2011/3174/content.pdf
https://www.cs.kent.ac.uk/pubs/2011/3174/content.pdf
https://www.usenix.org/conference/nsdi14/technical-sessions/wang
https://www.usenix.org/conference/nsdi14/technical-sessions/wang
https://doi.org/10.1080/00031305.2019.1583913
http://doi.acm.org/10.1145/844128.844152
http://doi.acm.org/10.1145/844128.844152
https://en.wikipedia.org/w/index.php?title=Kruskal%E2%80%93Wallis_one-way_analysis_of_variance&oldid=930537699
https://en.wikipedia.org/w/index.php?title=Kruskal%E2%80%93Wallis_one-way_analysis_of_variance&oldid=930537699
https://en.wikipedia.org/w/index.php?title=Kruskal%E2%80%93Wallis_one-way_analysis_of_variance&oldid=930537699
https://en.wikipedia.org/w/index.php?title=One-way_analysis_of_variance&oldid=931491661
https://en.wikipedia.org/w/index.php?title=One-way_analysis_of_variance&oldid=931491661
https://en.wikipedia.org/w/index.php?title=One-way_analysis_of_variance&oldid=931491661
https://en.wikipedia.org/w/index.php?title=Theil%E2%80%93Sen_estimator&oldid=906073990
https://en.wikipedia.org/w/index.php?title=Theil%E2%80%93Sen_estimator&oldid=906073990
https://en.wikipedia.org/w/index.php?title=Theil%E2%80%93Sen_estimator&oldid=906073990
https://en.wikipedia.org/w/index.php?title=Central_limit_theorem&oldid=937666343
https://en.wikipedia.org/w/index.php?title=Central_limit_theorem&oldid=937666343
https://en.wikipedia.org/w/index.php?title=Central_limit_theorem&oldid=937666343
https://en.wikipedia.org/w/index.php?title=Mahalanobis_distance&oldid=1036769660
https://en.wikipedia.org/w/index.php?title=Mahalanobis_distance&oldid=1036769660
https://en.wikipedia.org/w/index.php?title=Mahalanobis_distance&oldid=1036769660
https://en.wikipedia.org/w/index.php?title=Separation_of_concerns&oldid=1001182339
https://en.wikipedia.org/w/index.php?title=Separation_of_concerns&oldid=1001182339
https://en.wikipedia.org/w/index.php?title=Separation_of_concerns&oldid=1001182339
https://www.usenix.org/conference/nsdi20/presentation/yan
https://www.usenix.org/conference/nsdi20/presentation/yan
https://www.usenix.org/conference/atc18/presentation/yan-francis
https://www.usenix.org/conference/atc18/presentation/yan-francis
https://doi.org/10.1145/2785956.2787486
https://doi.org/10.1145/2785956.2787486
https://doi.org/10.1145/3458305.3463375
https://doi.org/10.1145/3458305.3463375

Journal of Systems Research (JSys) 2021

[90] Marco Zimmerling, Luca Mottola, and Silvia Santini.

Synchronous Transmissions in Low-Power Wireless: A

Survey of Communication Protocols and Network Ser-

vices. ACM Computing Surveys, 53(6):121:1–121:39,

December 2020. doi:10.1145/3410159.

A Details on the Implementation

One obstacle to the adoption of non-parametric statistics is

the lack of support in current scientific libraries; for example,

the computation of CIs for percentiles, although present in

textbooks, has no public implementation available.10

Therefore, to facilitate the use and adoption of the method-

ology we propose, we have implemented TriScale as a

Python module including all necessary functions to apply

our methodology. TriScale’s API contains one function for

each timescale of the data analysis, with docstrings containing

detailed information about each function’s usage. Each func-

tion is essentially a wrapper that calls the statistical tests and

methods appropriate for each timescale. The package also

includes support tools such as data visualizations. TriScale

uses Plotly [62] to create interactive plots in which one can

zoom in and out, toggle the visibility of individual traces, read

data values on hover, etc. Most plots in this paper have been

produced using TriScale and all are “clickable”: the figures

are hyperlinks leading to dynamic versions of the plots. Our

implementation is open source [36] and will be made avail-

able via common package management systems for Python.

We use Binder [41] to provide an interactive demo of TriScale

that runs directly in your web browser [38]—that’s right, no

need to install anything at all!

B Details on Case Studies

This appendix provides details on the four case studies pre-

sented in § 5; in particular, it details each evaluation scenario

and how we have obtained the data. All case studies are per-

formed using Jupyter notebooks, which are available in the

TriScale repository [36].

B.1 Congestion Control

Reproducing the case study. The entire case study is de-

scribed in detail in a Jupyter notebook11 that is available in

the TriScale repository [36].

Evaluation scenario. This case study compares the perfor-

mance of 17 congestion-control schemes using Pantheon [87].

We evaluate the throughput and one-way delay of full-throttle

flows, i.e., stable flows whose only throttling/limiting factor

is the congestion control. For a fair comparison between the

10We are currently working to include this functionality into SciPy.
11casestudy_congestion-control.ipynb

schemes, we use the MahiMahi emulator [55] (integrated in

Pantheon) and focus on a single flow scenario. We use only

the calibrated path from AWS California to Mexico, provided

by Pantheon.12

Data collection. We build the Pantheon toolchain from the

source code provided by the authors13 and test all schemes

locally based on the aforementioned emulated network. We

only modify the authors’ code to save the throughput and

delay raw data, such that we can do the analysis of runs using

TriScale. We perform two sets of experiments with always

10 runs per series:

• A set of 5 series with a runtime of 30s;

• A set of series with a runtime of 10, 20, 40, 50, and 60s,

respectively (one of each).

The data we collected are available on Zenodo [37].

Results. One important contribution of TriScale is to propose

an approach to quantify the reproducibility of results with a

variability score (§ 4.3). These scores allow making state-

ments such as: With 75% confidence, the variability scores

give the magnitude of variation expected in the middle 50%

of KPI values, shall one perform infinitely many series.

The scores obtained for this case study are relatively small

(less than 4Mbps and 3ms respectively; see Figure 8); this

is expected as this case study is run in emulation, which pro-

vides replicable networking conditions for the performance

evaluation. The entire case study contains more fined grained

analysis, which is available in a Jupyter notebook11 from the

TriScale repository [36].

B.2 Wireless Embedded Systems

Reproducing the case study. The entire case study is de-

scribed in detail in a Jupyter notebook14 that is available in

the TriScale repository [36].

Evaluation scenario. We run a simple evaluation of

Glossy [28], a low-power wireless protocol which includes

as parameter the number of retransmissions of each packet,

called N. We investigate the impact of two values of N on

the reliability of Glossy, measured as the packet reception

ratio (PRR). During one communication round, every node in

the network initiates in turn a Glossy flood and all the other

nodes log whether they successfully received the packet. This

is repeated for N = {1,2}. In addition:

• The evaluation runs on TelosB motes15 (26 nodes);

• The motes use radio frequency channel 22 (2.46 GHz,

which largely overlaps with Wi-Fi traffic);

• The payload size is set to 64 bytes.

12pantheon.stanford.edu/result/6539/
13github.com/StanfordSNR/pantheon
14casestudy_glossy.ipynb
15www.advanticsys.com/shop/mtmcm5000msp-p-14.html

23

https://doi.org/10.1145/3410159
https://github.com/romain-jacob/triscale/blob/master/casestudy_congestion-control.ipynb
https://pantheon.stanford.edu/result/6539/
https://github.com/StanfordSNR/pantheon
https://github.com/romain-jacob/triscale/blob/master/casestudy_glossy.ipynb
https://www.advanticsys.com/shop/mtmcm5000msp-p-14.html

Journal of Systems Research (JSys) 2021

0.00 0.02 0.10 0.17 0.19 0.41 0.44 0.53 0.84 1.25 2.66 2.98 4.39 5.14
8.16

11.61

47.73

SCReA
M

W
eb

RTC
Spro

ut

LE
DBAT

PCC-V
iva

ce

TCP B
BR

QUIC
 C

ub
ic

FillP
-S

he
ep

PCC-E
xp

r
FillP

TCP C
ub

ic

Ta
oV

A-10
0x
Ind

igo
Cop

a
Veru

s

PCC-A
lle

gro

TCP Veg
as

0

20

40

0.05 0.07 0.07 0.11 0.12 0.16 0.21 0.28
0.79 0.84 1.04 1.17 1.43 1.82

2.64

4.73

13.73

Ta
oV

A-10
0x

W
eb

RTC
Spro

ut

LE
DBAT

Ind
igo

PCC-V
iva

ce

TCP C
ub

ic

QUIC
 C

ub
ic
Veru

s

SCReA
M

PCC-E
xp

r

FillP
-S

he
ep

TCP B
BR

FillP

TCP Veg
as

Cop
a

PCC-A
lle

gro
0

5

10

15

[M
B

it/
s

]
[m

s
]

Throughput
O

ne-w
ay delay

Figure 8: Variability scores computed by TriScale for the

performance dimensions throughput and delay. In this case

study, the variability scores are computed as the 25th to 75th

percentile interval estimated with 75% confidence. From the

variability scores, the user gets a quantification, with a 75%

probability, of the range of variation in the KPI values for

50% of the series. Hence, the variability scores quantify

replicability: the larger the scores, the less replicable the

results are. Online: tiny.cc/triscale-plots#Figure-8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1
Blink All flows Inf. Timeout

Trace ID

Tr
ue

 P
os

iti
ve

 R
at

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

Trace ID

Sp
ee

d
[s

]

Figure 9: KPIs for Blink’s performance evaluation. 95% CI

on the median. Internet trace IDs listed in [35].

Online: tiny.cc/triscale-plots#Figure-9

Data collection. We perform the experiments using the Flock-

Lab testbed [47]. For both settings of the number of retrans-

missions N, we perform 24 randomly scheduled tests per day

during 7 consecutive days. The data we collected are available

on Zenodo [37].

B.3 Failure Detection

Reproducing the case study. The entire case study is de-

scribed in detail in a Jupyter notebook16 that is available in

the TriScale repository [36].

Evaluation scenario. This case study re-uses one of the eval-

uation scenarios from the original Blink paper (§ 6.1 in [35]).

It considers 15 publicly available real Internet traces [19, 21].

For each trace, 30 prefixes are randomly selected among those

that contain sufficiently many active flows. For each prefix,

the characteristics of the traffic are extracted and used to run

simulations where traffic sources generate flows exhibiting

the same distribution of parameters than the one extracted

from the real traces. Artificial failures are introduced in the

simulation, which Blink tries to detect. Blink is compared

against two baseline strategies:

• All flows. It monitors up to 10k flows for each prefix

and reroutes if at least 32 of them sees retransmissions

within the same time window. This strategy provides an

upper-bound on Blink’s ability to reroute upon actual

failures, but ignores memory constraints.

• Infinite Timeout. It is a variant of Blink where flows are

evicted when they terminate (with a FIN packet) and

never because of the flow eviction timeout. This strategy

tests the effectiveness of Blink’s flow eviction policy.

Data collection. The authors of Blink kindly provided the

data they collected for the original paper [35]. The data are

now available on Zenodo [37].

Evaluation objectives. Each prefix is used to generate five

failure scenarios, based on which we compute two metrics:

(i) the true positive rate (TPR), i.e., the ratio of failures that

Blink successfully detects (out of 5); (ii) the median rerouting

speed, i.e., the time Blink takes to reroute traffic once it

detects the failure. For both metrics, we use the 95% CI on

the median as KPI, computed over the set of prefixes for each

Internet trace.

Results. Blink achieves a TPR KPI of one for all the Inter-

net traces, with a rerouting speed ranging between 0.5 to

1s (Fig. 9). Hence, we can claim with 95% confidence that

these are the minimal performance expected for Blink for any

random set of prefixes within each of the Internet trace.

16casestudy_failure-detection.ipynb

24

https://nbviewer.jupyter.org/github/romain-jacob/triscale/blob/master/triscale_plots.ipynb#Figure-8
http://tiny.cc/triscale-plots#Figure-8
https://nbviewer.jupyter.org/github/romain-jacob/triscale/blob/master/triscale_plots.ipynb#Figure-9
https://nbviewer.jupyter.org/github/romain-jacob/triscale/blob/master/triscale_plots.ipynb#Figure-9
http://tiny.cc/triscale-plots#Figure-9
https://github.com/romain-jacob/triscale/blob/master/casestudy_failure-detection.ipynb

Journal of Systems Research (JSys) 2021

B.4 Video Streaming

Reproducing the case study. The entire case study is de-

scribed in detail in a Jupyter notebook17 that is available in

the TriScale repository [36].

Evaluation scenario. This case study re-uses one of the

evaluation scenarios from the original Pensieve paper (§ 5.2

in [49]). Specifically, it compares Pensieve against pre-

existing adaptive bitrate algorithms using different quality

of experience (QoE) metrics. The comparison is performed

using the MahiMahi [55] network emulator by replaying a

set of synthetic traces generated from real-world broadband

datasets. We consider the set of traces generated from the

FCC dataset;18 these traces were created by the Pensieve

authors by concatenating randomly-selected traces from the

“web browsing” category in the August 2016 collection. There

are multiple definitions of QoE: we consider the “linear” one

(see [49] for details).

Data collection. The authors of Pensieve were not able to

provide the data they collected for the original paper [49].

Consequently, we retrieved the QoE data directly from the

paper plots using a web-based application.19 The data we

retrieved are available on Zenodo [37].

Evaluation objectives. From the QoE metric values, we com-

pute the 95% CI (lower-bound) for the {2,4,6 . . .98}th per-

centiles, based on which we obtain a 95% CI for the entire

CDF of QoE for the different algorithms.

Results. Fig. 10 shows the 95% CI CDFs computed for the

linear QoE metric. The 95% CI are relatively close to the

empirical CDFs, as illustrated in Fig. 7, which shows both the

empirical CDF and its 95% CI for Pensieve (the same applies

to all algorithms).

C Details on the Scalability Evaluation

This appendix provides additional information about the eval-

uation of TriScale’s scalability presented in § 5.5. We per-

form the evaluation using a Jupyter notebook20 (i.e., an open-

source web-based interactive computational environment to

create and share documents containing live code, equations,

visualizations, and text) that is available in the TriScale repos-

itory [36]. Such evaluation, which we run on a commodity

laptop, yields the results summarized in Table 3.

Results – Metrics. The data shows two modes in the ex-

ecution time of the analysis_metric() function: a step in-

crease, followed by a slow linear increase. This can be eas-

ily explained: the more computationally expensive part of

17casestudy_video-streaming.ipynb
18Federal Communications Commission. https://www.fcc.gov/reports-

research/reports/
19apps.automeris.io/wpd/
20triscale_scalability.ipynb

0 1 2
0

20

40

60

80

100

Buffer-based

Rate-based

BOLA

MPC

robustMPC

Pensieve

Offline optimal

Mean QoE

CD
F

Figure 10: 95% CI on the CDF of various adaptive bitrate

algorithms. Online: tiny.cc/triscale-plots#Figure-10

Table 3: Scalability evaluation. TriScale data analysis is fast

and scales well with increasing input sizes. The most time-

consuming element is the convergence test (§ 4.5), which is

performed before the computation of metrics. Still, it gener-

ally takes less than one second for inputs (i.e., the number of

raw measurements in a run) of up to one million data points.

Computation of Input size Execution time

(approx.)

1000 20ms

Metrics 10 k 50ms

1 M 1s

KPIs and 100 10ms

Variability scores 1000 100ms

25

https://github.com/romain-jacob/triscale/blob/master/casestudy_video-streaming.ipynb
https://www.fcc.gov/reports-research/reports/
https://www.fcc.gov/reports-research/reports/
https://apps.automeris.io/wpd/
https://github.com/romain-jacob/triscale/blob/master/blob/master/triscale_scalability.ipynb
https://nbviewer.jupyter.org/github/romain-jacob/triscale/blob/master/triscale_plots.ipynb#Figure-10
http://tiny.cc/triscale-plots#Figure-10
https://nbviewer.jupyter.org/github/romain-jacob/triscale/blob/master/triscale_scalability.ipynb

Journal of Systems Research (JSys) 2021

analysis_metric() is the convergence test, which includes the

Theil-Sen regression (§ 4.5). The latter works by computing

the slopes between all pairs of points and returns the median

slope value; thus, the regression scales with O(n2).
However, TriScale does not perform the regression on the

input data directly. Instead, TriScale divides the input data in

chunks. For each chunk, a metric value is computed, leading

to a new data series of metric values. The purpose of the

convergence test is to verify that these metric values have

converged; thus TriScale executes the Theil-Sen regression

on this new data series. The Theil-Sen regression does not re-

quire many samples for producing a reliable result; a few tens

of data points are often considered sufficient [82]. Thus, we

can cap the size of metric data series (TriScale caps it to 100

values – § 4.1), which bounds the execution time of the Theil-

Sen regression. Ultimately, this allows the analysis_metric()
function to scale very well with the sample size.

The linear increase for a large number of raw samples is due

to the computation of the metric on increasingly large chunks.

The more complex the metric is, the longer the execution

time. In this evaluation, a percentile is used as metric, which

is computed efficiently with NumPy [56].

Overall, running analysis_metric() takes about 1s for up

to one million data points. The data collection time depends

on the networking experiment, but it is unlikely that many

experiments would produce much more than a million of

data points per second. Thus, we conclude that the computa-

tion time of the analysis_metric() function is negligible for

networking experiments.

Results – KPIs. The data shows a clear linear correlation

between the sample size and the execution time of the

analysis_kpi() function, which is not surprising: most com-

putations are related to the determination of the confidence

interval using Thompson’s method, which is an iterative pro-

cess through the ordered data samples [74].

The input size for the KPI computation is the number of se-

ries one performs for an experiment. Our results show that the

computation takes less than 100ms for an input size of 1k; we

thus conclude that the computation time of the analysis_kpi()
function is negligible for networking experiments.

Results - Variability scores. Unsurprisingly, the data is very

similar as for analysis_kpi(): The two functions essentially

perform the same computations. They only differ in the gen-

eration of outputs (logs and plots). Since the outputs are

not considered in this scalability evaluation, we obtain very

similar results for both functions. Thus, we conclude that

the computation time of the analysis_variability() function

is negligible for networking experiments.

26

	Introduction
	Overview of TriScale
	How TriScale Improves Data Analysis
	Core Principles of TriScale

	Statistics for Replicability
	Designing TriScale
	Runs and Metrics
	Series and KPIs
	Sequels and Variability Score
	Formalism Brings Conciseness
	Statistics in TriScale
	Network Profiling
	Assessing Replicability

	TriScale in Action
	Congestion Control
	Wireless Embedded Systems
	Failure Detection
	Video Streaming
	Scalability of TriScale Data Analysis

	Using TriScale
	Discussion and Future Work
	Related Work
	Conclusions
	Details on the Implementation
	Details on Case Studies
	Congestion Control
	Wireless Embedded Systems
	Failure Detection
	Video Streaming

	Details on the Scalability Evaluation

