
Technische Universität Dresden

Doctoral Thesis

Design and Real-World Evaluation

of Dependable

Wireless Cyber-Physical Systems

Author:
Fabian Mager

Advisor:
Prof. Dr. Marco Zimmerling

A thesis submitted in fulfillment of the requirements
for the degree of Doktoringenieur (Dr.-Ing.)

in the

Networked Embedded Systems Lab
Fakultät Informatik

December 22, 2022

https://tu-dresden.de
https://nes-lab.org/
https://tu-dresden.de/ing/informatik

To my familiy.

Abstract

The ongoing effort for an efficient, sustainable, and automated interaction between
humans, machines, and our environment will make cyber-physical systems (CPS) an
integral part of the industry and our daily lives. At their core, CPS integrate computing
elements, communication networks, and physical processes that are monitored and
controlled through sensors and actuators. New and innovative applications become
possible by extending or replacing static and expensive cable-based communication
infrastructures with wireless technology. The flexibility of wireless CPS is a key
enabler for many envisioned scenarios, such as intelligent factories, smart farming,
personalized healthcare systems, autonomous search and rescue, and smart cities.

High dependability, efficiency, and adaptivity requirements complement the demand
for wireless and low-cost solutions in such applications. For instance, industrial and
medical systems should work reliably and predictably with performance guarantees,
even if parts of the system fail. Because emerging CPS will feature mobile and battery-
driven devices that can execute various tasks, the systems must also quickly adapt to
frequently changing conditions. Moreover, as applications become ever more sophis-
ticated, featuring compact embedded devices that are deployed densely and at scale,
efficient designs are indispensable to achieve desired operational lifetimes and satisfy
high bandwidth demands.

Meeting these partly conflicting requirements, however, is challenging due to imper-
fections of wireless communication and resource constraints along several dimensions,
for example, computing, memory, and power constraints of the devices. More precisely,
frequent and correlated message losses paired with very limited bandwidth and varying
delays for the message exchange significantly complicate the control design. In addi-
tion, since communication ranges are limited, messages must be relayed over multiple
hops to cover larger distances, such as an entire factory. Although the resulting mesh
networks are more robust against interference, efficient communication is a major
challenge as wireless imperfections get amplified, and significant coordination effort
is needed, especially if the networks are dynamic.

CPS combine various research disciplines, which are often investigated in isolation,
ignoring their complex interaction. However, to address this interaction and build trust
in the proposed solutions, evaluating CPS using real physical systems and wireless
networks paired with formal guarantees of a system’s end-to-end behavior is necessary.
Existing works that take this step can only satisfy a few of the abovementioned
requirements. Most notably, multi-hop communication has only been used to control

vi

slow physical processes while providing no guarantees. One of the reasons is that the
current communication protocols are not suited for dynamic multi-hop networks.

This thesis closes the gap between existing works and the diverse needs of emerging
wireless CPS. The contributions address different research directions and are split
into two parts. In the first part, we specifically address the shortcomings of existing
communication protocols and make the following contributions to provide a solid
networking foundation:

• We present Mixer, a communication primitive for the reliable many-to-all mes-
sage exchange in dynamic wireless multi-hop networks. Mixer runs on resource-
constrained low-power embedded devices and combines synchronous transmissions
and network coding for a highly scalable and topology-agnostic message exchange.
As a result, it supports mobile nodes and can serve any possible traffic patterns,
for example, to efficiently realize distributed control, as required by emerging CPS
applications.

• We present Butler, a lightweight and distributed synchronization mechanism with
formally guaranteed correctness properties to improve the dependability of syn-
chronous transmissions-based protocols. These protocols require precise time syn-
chronization provided by a specific node. Upon failure of this node, the entire net-
work cannot communicate. Butler removes this single point of failure by quickly
synchronizing all nodes in the network without affecting the protocols’ performance.

In the second part, we focus on the challenges of integrating communication and vari-
ous control concepts using classical time-triggered andmodern event-based approaches.
Based on the design, implementation, and evaluation of the proposed solutions using
real systems and networks, we make the following contributions, which in many ways
push the boundaries of previous approaches:

• We are the first to demonstrate and evaluate fast feedback control over low-power
wireless multi-hop networks. Essential for this achievement is a novel co-design
and integration of communication and control. Our wireless embedded platform
tames the imperfections impairing control, for example, message loss and varying
delays, and considers the resulting key properties in the control design. Furthermore,
the careful orchestration of control and communication tasks enables real-time
operation and makes our system amenable to an end-to-end analysis. Due to this,
we can provably guarantee closed-loop stability for physical processes with linear
time-invariant dynamics.

• We propose control-guided communication, a novel co-design for distributed self-
triggered control over wireless multi-hop networks. Self-triggered control can save
energy by transmitting data only when needed. However, there are no solutions that
bring those savings to multi-hop networks and that can reallocate freed-up resources,
for example, to other agents. Our control system informs the communication system
of its transmission demands ahead of time so that communication resources can be

vii

allocated accordingly. Thus, we can transfer the energy savings from the control to
the communication side and achieve an end-to-end benefit.

• We present a novel co-design of distributed control and wireless communication
that resolves overload situations in which the communication demand exceeds
the available bandwidth. As systems scale up, featuring more agents and higher
bandwidth demands, the available bandwidth will be quickly exceeded, resulting
in overload. While event-triggered control and self-triggered control approaches
reduce the communication demand on average, they cannot prevent that potentially
all agents want to communicate simultaneously. We address this limitation by
dynamically allocating the available bandwidth to the agents with the highest need.
Thus, we can formally prove that our co-design guarantees closed-loop stability for
physical systems with stochastic linear time-invariant dynamics.

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor
Marco Zimmerling. This thesis was only possible due to his continuous support in
all aspects of the work. I would also like to thank him especially for always being
understanding of personal circumstances. This dedication is evident in the exceptional
way he supervises and mentors doctoral students and his aspiration for high-quality
research. Therefore, I am very grateful to him for giving me the opportunity as his
first doctoral student and for being part of the beginnings of his research group.

Furthermore, I would like to thank all my former and current colleagues for the
wonderful time as well as their support over all the years. I would especially like to
thank my long-time office mate Carsten Herrmann, who has always been a source of
inspiration and motivation with his extensive and profound knowledge about almost
everything I have asked. In addition, I would like to thank Kai Geißdörfer for his
support, hardware excursions, coffee breaks, and the dinners we had together. My
family and I always appreciated his calm and friendly manner. Thanks also to Conny
Okuma for helping with all the paperwork and orders.

Essential for the results of this thesis was also the very successful collaboration with our
project partners Dominik Baumann and Sebastian Trimpe. I am grateful for the pleasant
and productive working atmosphere, and I always enjoyed our project meetings and
discussions. Looking back, I happily recall the countless hours Dominik and I spent
either physically or virtually in the lab together. Our collaboration could hardly have
been better. Even if debugging was painful at times, we never lost our confidence.

Furthermore, I was fortunate to work with very talented and supportive individuals
from the TEC group at ETH Zurich. Special thanks go to Lothar Thiele, Andreas Biri,
and Romain Jacob, who were always there with advice and support. I would also like
to thank Reto Da Forno for his help with the FlockLab testbed.

Many thanks also to my former colleagues and friends Frank Busse, Martin Nowack,
and Robert Krahn, with whom I had the pleasure of gaining my first experiences in
the scientific environment. I look back on this time with pleasure.

Last but not least, my deepest gratitude goes to my family for all their sacrifice and
support during this journey.

Finally, the works presented in this thesis were supported by the German Research
Foundation (DFG) through SPP 1914 project EcoCPS (grants ZI 1635/1-1), the Emmy
Noether project NextIoT (grant ZI 1635/2-1), and the Center for Advancing Electron-
ics Dresden (grant EXC 1056).

Contents

Abstract v

Acknowledgements ix

List of Abbreviations xiii

List of Figures xvi

List of Tables xvii

1 Introduction 1

1.1 Motivation . 1
1.2 Application Requirements . 3
1.3 Challenges . 4
1.4 State of the Art . 6
1.5 Contributions and Road Map . 7

2 Mixer: Efficient Many-to-All Broadcast in Dynamic Wireless Mesh

Networks 15

2.1 Introduction . 16
2.2 Overview . 18
2.3 Design . 22
2.4 Implementation . 31
2.5 Evaluation . 32
2.6 Discussion . 40
2.7 Related Work . 41

3 Butler: Increasing the Availability of Low-Power Wireless Communi-

cation Protocols 45

3.1 Introduction . 46
3.2 Motivation and Background . 48
3.3 Design . 49
3.4 Analysis . 53
3.5 Implementation . 58
3.6 Evaluation . 60
3.7 Related Work . 68

xii Contents

4 Feedback Control Goes Wireless: Guaranteed Stability over Low-Power

Multi-Hop Networks 73

4.1 Introduction . 74
4.2 Related Work . 75
4.3 Problem Setting and Approach . 77
4.4 Wireless Embedded System Design 78
4.5 Control Design and Analysis . 83
4.6 Experimental Evaluation . 89
4.A Control Details . 95

5 Control-Guided Communication: Efficient Resource Arbitration and

Allocation in Multi-Hop Wireless Control Systems 99

5.1 Introduction . 100
5.2 Problem Setting . 102
5.3 Co-Design Approach . 103
5.4 Wireless Communication System Design 104
5.5 Self-Triggered Control Design . 105
5.6 Experimental Evaluation . 108

6 Scaling Beyond Bandwidth Limitations: Wireless ControlWith Stability

Guarantees Under Overload 115

6.1 Introduction . 116
6.2 Problem and Related Work . 118
6.3 Overview of Co-Design Approach . 121
6.4 Predictive Triggering and Control System 124
6.5 Adaptive Communication System . 128
6.6 Integration and Stability Analysis . 134
6.7 Testbed Experiments . 137
6.A Proof of Theorem 4 . 143
6.B Usage of the Network Bandwidth for Control 149

7 Conclusion and Outlook 153

7.1 Contributions . 154
7.2 Future Directions . 155

Bibliography 176

List of Publications 177

List of Abbreviations

AP application processor

BLE Bluetooth Low Energy

CP communication processor

CPS cyber-physical systems

CRC cyclic redundancy check

DPP dual-processor platform

ETC event-triggered control

i.i.d. independent and identically distributed

LTI linear time-invariant

LWB Low-Power Wireless Bus

LQR linear quadratic regulator

MSB mean square bounded

PHY physical layer

RLNC random linear network coding

SFD start of frame delimiter

ST synchronous transmissions

STC self-triggered control

TTW Time-Triggered Wireless

WSN wireless sensor network

List of Figures

1.1 Wireless CPS . 2

2.1 Real trace of Mixer in a 2-hop IEEE 802.15.4 network 19
2.2 Average rank increase with differentMixer features 21
2.3 Software architecture and interactions 23
2.4 Mixer’s packet format . 24
2.5 Low-level packet transport time and processing time 32
2.6 Performance for different message sizes 34
2.7 Performance for different message distributions 34
2.8 Performance for different generation sizes 36
2.9 Decoding of messages under node failures 37
2.10 Outdoor experiment with a mobile node 38
2.11 Mobile node neighborhood during outdoor experiment 38
2.12 Processing speedup of ARM cores over TelosB 39

3.1 Butler execution example . 50
3.2 Correctness in the case of worst case clock drift 56
3.3 Butler’s packet structure . 59
3.4 FlockLab testbed with 23 nRF52840 devices 61
3.5 Time synchronization during the execution of Butler 62
3.6 Distribution of reference time origins 63
3.7 Synchronization accuracy before and after Butler 64
3.8 Time needed to synchronize all nodes for different initial offsets . . . 65
3.9 Communication performance of Mixer with and without Butler . . 67

4.1 Design space of wireless CPS that have been practically evaluated . . 75
4.2 Application tasks and message transfers of a single feedback loop . . 77
4.3 Time-triggered operation of low-power wireless multi-hop protocol . 79
4.4 Scheduling of application tasks and message transfers 81
4.5 Stabilization and synchronization with wireless networks 85
4.6 Layout of CPS testbed with 20 DPP nodes 89
4.7 Schematic of a cart-pole system . 90
4.8 State of a remotely stabilized cart-pole system 91
4.9 Distribution of the jitter on the end-to-end delay 92
4.10 Synchronizing the cart positions of five cart-pole systems 93
4.11 Control performance and radio duty cycle for stabilization 94
4.12 Control performance under artificially injected message loss 95

xvi List of Figures

5.1 STC over a wireless multi-hop network 102
5.2 Time-triggered operation of the wireless protocol 104
5.3 CPS testbed with 15 DPP nodes and 5 cart-pole systems 108
5.4 Control performance and bandwidth utilization over time 110
5.5 Trade-off between control performance, energy efficiency, and flexibility 111

6.1 Overload problem of ETC and STC 117
6.2 System architecture of our proposed co-design approach 123
6.3 Overview of the wireless communication protocol 129
6.4 Mixer’s communication latency using IEEE 802.15.4 and 2 Mbps BLE 131
6.5 Mixer’s latency using the 2 Mbps BLE PHY with and without warmstart 131
6.6 Communication costs at different network bandwidth utilizations . . 134
6.7 Wireless CPS testbed with 20 agents 138
6.8 Generated control traffic for the predictive and periodic approach . . 141
6.9 Per agent distribution of the transmitted priorities 142
6.10 Control cost over time . 143

List of Tables

1.1 Prior works on wireless CPS that have been practically evaluated . . 8

2.1 Transmit probabilities with requests pending 28
2.2 Mixer’s performance with and without mobility 39
2.3 Projected latency for different PHY bitrates and CPU cores 40

3.1 State transition matrix . 54
3.2 Butler’s temporal overhead for different initial offsets 66

5.1 Qualitative comparison of prior and our work 100

6.1 Comparison to prior co-designs of control and wireless communication 121

1
Introduction

1.1 Motivation

Technological advances lead to an increasing digitalization of our world. The accompa-
nying interconnection between humans, machines, and our environment transforms
industries, businesses, and our daily lives. Cyber-physical systems (CPS) play an essen-
tial role in this transformation, as the integration of processes in our physical world
with the computing and communication capabilities of the cyber world is at the core
of these systems [39]. Figure 1.1 shows the main components of CPS. Sensors monitor
relevant parameters of the physical process, while actuators can directly interact with
the process and influence its state. Based on the sensed process state and a fundamental
understanding of the physical process, appropriate commands for the actuators are
computed by a controller. The interdependencies between the computations and the
process state lead to a feedback loop whose characteristics and requirements depend
mainly on the dynamics of the physical process and the specific control task. Because
sensors, actuators, and controllers are often not co-located due to the dimensions of
the physical process (e.g., in a refinery), information must be exchanged via a commu-
nication network (wired or wireless). In general, CPS are complex systems, and their
design requires interdisciplinary knowledge and engineering principles from different
fields, such as control, communication, and embedded systems [39, 144].

There are many different research fields and applications in which CPS play an impor-
tant role. For example, nurtured by growing demands for individualized, high-quality
products, and to maximize profit margins, smart factories will use CPS to realize
highly automated and adaptive manufacturing flows [17, 66, 184]. Moreover, consider-
able challenges in the agricultural sector are caused by, for example, environmental
damages, climate change, and an ever-increasing world population, demanding more
efficient and sustainable farming methods [176]. In this context, CPS will monitor

2 Chapter 1. Introduction

Figure 1.1: Wireless CPS. Embedded devices are deeply integrated into the physical en-
vironment to monitor its state (sensor). Based on that, control commands are computed
(controller) and applied through actuators, closing the feedback loop. A communication
network interconnects spatially distributed devices and distributes all information over large
distances. Thereby, wireless networks achieve unprecedented flexibility at much lower costs.

the environment and control the precise and efficient use of water, fertilizers, and
pesticides, ultimately reducing the footprint of the agricultural sector while increasing
crop yield. Other examples where CPS serve as an important building block include
personalized healthcare [167], next-generation power grids [46], intelligent transporta-
tion systems [19], autonomous search and rescue [61], and the optimization of various
processes in entire cities [82].

Wireless cyber-physical systems. Closing feedback loops using wireless technology
(see Figure 1.1) has the potential to advance the field of CPS, improving existing and
enabling new applications. Wireless CPS can significantly reduce costs and provide
higher mobility, better scalability, and unparalleled flexibility [4, 190].

In comparison, installation and maintenance of a cable-based infrastructure are costly
and error-prone, especially due to a large number of connections [26, 122]. Once
installed, the communication infrastructure is static and scales poorly toward larger
deployments in general. The high costs often require a trade-off between the number
of sensors and actuators best suited for the specific physical process and an economi-
cally viable solution. In contrast, embedded devices that communicate wirelessly are
inexpensive and flexible, can be deployed densely and at scale, easily extend existing
systems, and can reach into tiny spaces. Truly untethered devices become possible
using batteries, energy harvesting [139], or wireless power transfer techniques [21] and
provide the highest flexibility. This flexibility opens up new possibilities as previously

1.2. Application Requirements 3

unreachable information can now be unlocked, for example, at moving and rotating
parts, over impassable terrain, or in challenging environmental conditions such as heat
and abrasive substances [45, 88, 147].

1.2 Application Requirements

In addition to the need for low-cost and embedded devices, CPS applications also
require high dependability, efficiency, and adaptivity, particularly in medical and
industrial settings [17]. We will discuss these requirements in more detail in the
following.

Dependability. A dependable system that can be trusted to safely and correctly fulfill
its desired task is essential to most applications. Dependability includes various aspects,
such as reliability, availability, predictability, and fault tolerance.

A prerequisite for the correct operation of CPS is the reliable communication of sensor
data and control commands, as the latter depend on recent information about the state
of the physical process. Missing or delayed information can lead to reduced control
performance or compromise the stability of the feedback system. However, since CPS
are distributed systems and potentially consist of a large number of devices, failures
will be no exception. For example, broken sensors, software bugs, or empty batteries
can render parts of the system non-functional at any time. Therefore, the impact of
such individual failures should affect the rest of the system as little as possible [45]. A
reliable and fault-tolerant operation plays an important role in industry, especially in
safety-critical systems where already a few message losses may lead to severe outages,
substantial financial losses, or even accidents involving humans [4, 190].

In addition to reliability, predictability is another crucial aspect. The physical process
and its characteristics determine how fast a control loop must be closed, imposing
real-time constraints on the CPS. For example, typical update intervals in industrial
applications range from tens or hundreds of milliseconds to a few seconds [4]. Hence,
the timing of communication and computations must be predictable and deterministic
with as little variation as possible [101, 135]. Such properties are the foundation for
formal guarantees on a system’s end-to-end behavior and to build trust in the proposed
solution, for example, by analyzing safety, stability, or control performance [17].

Efficiency. As CPS applications become ever more sophisticated, they will use more
agents, have higher bandwidth demands, and potentially close multiple feedback loops
over the same network [2]. Thus, the efficient use of available resources, particularly
network bandwidth, is indispensable. For instance, it is expected that the traffic volumes
of machine-to-machine communication for monitoring and control will increase by up
to 50 % per year over the next ten years [38].

Efficiency is also a primary concern when using completely untethered devices that
rely only on stored and potentially harvested energy. Replacing batteries or other
maintenance work is costly, especially when there are many devices or the system is

4 Chapter 1. Introduction

deployed in remote or hard-to-reach locations. Thus, an energy-efficient operation is
mandatory to achieve desired operational lifetimes and reduce maintenance costs. For
example, industrial sensors, such as vibration, temperature, and pressure sensors, have
lifetime expectations of several years [4].

Adaptivity. The flexibility of wireless CPS is paving the way for new and highly
dynamic applications. Mobile and heterogeneous agents, such as different autonomous
robots in a smart factory [17], canmove around freely or where needed, complementing
or replacing the static infrastructure. The networks that emerge due to this flexibility
are continuously changing and potentially need to extend over long distances, for
example, to cover entire factories or large open areas [61, 176]. Therefore, CPS must
adapt quickly at run-time to changing conditions within the system itself or in the
environment.

Furthermore, the systems need to adapt to different and possibly varying communica-
tion demands, including traffic load and communication patterns, depending on the
application and control design. For instance, while distributed control approaches
scale better and are more robust [190], they have different communication require-
ments than centralized control. That is, instead of forwarding all sensor data toward
a distinct central point and then distributing the control commands to the actuators,
information must flow efficiently from and to multiple locations. Examples include
collaborative robots [86] and swarming drones [30, 140], which frequently require
mutual information to coordinate their actions and avoid crashing into each other.
Moreover, some distributed control approaches are only tractable if each agent has
complete information about the system’s state [22].

1.3 Challenges

The development of wireless CPS faces significant challenges in meeting the various
application requirements. We address the main challenges in the following.

Imperfections of wireless communication. Wireless networks transport informa-
tion, for example, via radio waves, without using a continuous, guided, and typically
protected medium such as cables. Thus, the antennas can generally broadcast informa-
tion in all directions, a prerequisite to high flexibility. However, the downside is that
wireless communication is much more susceptible to interference, fading effects, and
environmental changes, decreasing communication reliability. For example, different
signals or multi-path reflections of the same signal can overlap and interfere, leading to
message loss, a common phenomenon in wireless networks. Unfortunately, these losses
often have a significant correlation in space and time [162, 186], interrupting feed-
back loops unpredictably and making theoretical analyses and proofs of the system’s
behavior hard, if not impossible.

In addition, since transmitted signals get attenuated over distance and when passing
through obstacles, the communication range and bandwidth are very limited depending

1.3. Challenges 5

on thewireless technology and the frequencies used. The constrained bandwidth affects
how quickly feedback loops can be closed and lowers the number of messages carrying
sensor readings and control signals compared to wired solutions. Furthermore, the
lower throughput and the message losses result in longer and varying delays for the
message exchange, making it difficult to meet real-time requirements. Because of these
wireless imperfections, closing feedback loops over a wireless network comes with
significant challenges [107, 175].

Dynamics of multi-hop networks. The networks of emerging CPS can quickly
exceed the communication range of individual devices, necessitating complex and
dynamic mesh topologies. On the one hand, such topologies are more robust and fault-
tolerant because each device has multiple options for forwarding messages instead of a
single link, which represents a single point of failure [92]. On the other hand, effective
and efficient communication in multi-hop networks requires significant coordination
between the devices.

Other than in single-hop networks, where all devices can directly exchange messages
with each other, exchangingmessages over multiple hops introduces various challenges.
Since messages can take different paths toward their destination, there are varying
delays, out-of-order deliveries, and duplicates. Well-known problems such as hidden
or exposed nodes hinder communication when coordination is lacking. In addition,
the theoretical throughput in multi-hop networks is bounded to at most half of the
throughput of single-hop networks [133].

Mobile devices, failures, and a changing environment add another dimension: time-
varying wireless communication links. The required coordination of nodes becomes an
ongoing effort because communication links will continuously appear, disappear, and
change in quality. The latter can also be observed when the devices are static [163].

Overall, the challenges associated with dynamic multi-hop networks add to the wireless
imperfections, making communication less reliable, unpredictable, and elaborate to
coordinate, eventually impairing the control performance [191].

Highly constrained resources of embedded devices. Embedded devices that can
be deeply integrated into the physical environment and are expected to have long
and maintenance-free lifetimes are subject to resource constraints along different
dimensions. For example, reduced computing capabilities, small memories, and power
constraints limit the algorithmic complexity of programs and affect the control and com-
munication performance. However, these constraints conflict with the ever-increasing
demands for higher performance, dependability, and scalability of CPS. The design of
such systems thus becomes a non-trivial balancing act between achievable throughput,
communication range, and energy cost.

6 Chapter 1. Introduction

1.4 State of the Art

In this section, we discuss the state of the art in wireless CPS and describe the gaps
with respect to the envisioned application scenarios. We begin with an examination of
the current state of communication technology.

Communication technology. Today’s practically relevant wireless communication
protocols used in industry are, for example, WirelessHART, ISA100.11a, ZigBee, Blue-
tooth, and Wi-Fi [17, 184]. Inspired by communication protocols in wired networks,
these wireless protocols gather information about the quality of wireless links and the
overall network topology to derive routing information and coordinate the interac-
tion between the nodes. The performance and efficiency of these link-based routing
protocols depend on the correctness and actuality of the topology information, which
requires regular maintenance to keep up with changes in the network, for example,
to repair broken routes. However, when the network is dynamic and communication
links frequently change, the maintenance overhead drastically increases and occupies
valuable communication bandwidth. Consequently, routing-based protocols become
overloaded and are unable to support the dynamic infrastructures of emerging CPS.
Unfortunately, this counteracts one of the key selling points of wireless communication:
its flexibility.

Wireless communication protocols typically use techniques such as retransmissions,
multi-path routing, and different medium access strategies to increase the reliability of
the message exchange. However, while effective, these techniques further amplify the
problem of varying and unpredictable communication delays, making it difficult to
provide real-time and control performance guarantees.

In addition, realizing feedback or distributed control, for example, coordinating a swarm
of drones [140], requires that messages are exchanged deterministically between all or
a subset of devices (i.e., many-to-many) - essentially “in all directions” [4]. However,
the traffic patterns of most wireless communication protocols lack support for efficient
many-to-many communication between multiple sensors, controllers, and actuators.
For instance, in WirelessHART and ISA100.11a, the traffic can flow from all devices
toward a gateway or vice versa. The lack of proper communication support results in
poor control performance or the infeasibility of closed-loop stability [187].

Moreover, state-of-the-art wireless protocols often have centralized designs featur-
ing a distinct network manager. This manager coordinates the message exchange
by collecting topology information and distributing communication schedules. Al-
though centralized designs are generally more straightforward and easier to analyze,
the central instance is always a single point of failure and becomes a bottleneck as
systems are scaled up [101, 190]. Hence, due to wireless imperfections and inefficient
communication support, distributed and scalable solutions that can meet the high
demands of CPS are missing today.

1.5. Contributions and Road Map 7

Wireless cyber-physical systems. The strong interconnection between communi-
cation and control nurtured research on control under network-induced constraints,
with relevant works being surveyed in [69] and [191]. These works analyze the impact
of, for example, limited bandwidth, varying delays, and packet loss on the control
system and develop new control designs. However, wireless control has mainly been
analyzed theoretically in the past, and only a few works provide empirical results, for
example, in simulated case studies using WirelessHART [96, 111]. Despite progress
over the years, wireless CPS are rare in industry, except for non-critical tasks with
relaxed requirements [17]. The main reason is the lack of trust in wireless solutions,
particularly concerning dependability. Thus, real-world experiments on realistic CPS
testbeds must complement a rigorous theoretical analysis [32, 101].

Table 1.1 lists selected works evaluated on physical platforms and real wireless net-
works. The various works include: structural control of buildings, bridges, or tun-
nels [109]; adaptive lighting in road tunnels [27]; power management in data cen-
ters [150]; control of water levels in double-tank systems [9, 10]; control of underwater
and ground robots [68, 151, 152], and the well-known academic example of stabilizing
an inverted pendulum [14, 44, 67, 136, 165].

One of the key observations is that there is a considerable gap between the requirements
of emerging CPS and the combination of properties that current approaches can provide,
particularly the support for multi-hop communication makes a difference. So far, multi-
hop communication has only been shown for slow processes with update intervals on
the order of several seconds. In contrast, a stability analysis that considers the entire
system relies on small single-hop networks. Moreover, a distributed implementation,
where nodes can make local decisions based on their own information and information
received from other nodes, does not exist due to the constrained traffic patterns of
existing wireless communication protocols. Also, the possibility of reallocating or
saving unused resources is not self-evident, although it is essential for efficiency and
scalability. Advances in control design, for example, event-triggered control (ETC)
and self-triggered control (STC) methods [63, 124], show that significant savings are
possible without sacrificing control performance. For example, Araújo et al. [9, 10]
use a STC approach to reduce the generated control traffic. However, they also note
that these savings do not directly carry over to the communication system because
communication resources must be arbitrated and allocated ahead of time. Therefore,
gaining a true end-to-end benefit is an ongoing and non-trivial integration challenge.

1.5 Contributions and Road Map

The contributions of this thesis are split into two parts. In the first part, we focus on the
networking foundation and address the shortcomings of state-of-the-art low-power
wireless communication protocols to satisfy higher application demands. We then
integrate communication and control in the second part and build real wireless CPS
to validate our theoretical findings regarding stability and performance guarantees.

8 Chapter 1. Introduction

Table
1.1:Selected

w
orkson

w
irelessCPS

thathave
been

evaluated
on

physicalplatform
sand

realw
ireless

netw
orks

[17].
There

is
a
large

gap
betw

een
the

requirem
ents

ofem
erging

CPS
applications

(regarding
dependability,adaptivity,and

effi
ciency)and

the
capabilities

ofstate-of-the-artapproaches.In
particular,

m
ulti-hop

com
m
unication

posesa
significantchallenge

in
com

bination
w
ith

the
otherrequirem

ents.

D
e
p
e
n
d
a
b
i
l
i
t
y

A
d
a
p
t
i
v
i
t
y

E
ffi
c
i
e
n
c
y

W
ork

Stability
Shortupdate

M
ulti-hop

M
ode

D
istributed

Reallocation
Resource

analysis
intervals

changes
im

plem
entation

savings

[9,10]
✓

✗
✗

✗
✗

✓
✓

[44]
✓

✓
✗

✗
✗

✗
✗

[136]
✓

✓
✗

✗
✗

✗
✗

[14]
✓

✓
✗

✗
✗

✗
✗

[68]
✓

✓
✗

✗
✗

✗
✓

[151,152]
✓

✓
✗

✗
✗

✗
✗

[109,165]
✗

✓
✗

✗
✗

✗
✗

[67]
✗

✓
✗

✗
✗

✗
✗

[27]
✗

✗
✓

✗
✗

✗
✗

[150]
✗

✗
✓

✗
✗

✓
✓

1.5. Contributions and Road Map 9

Thereby, we make use of classical time-triggered control designs as well as modern
event-based approaches.

Each chapter features the design, implementation, and evaluation of the proposed
solution based on real hardware and wireless networks, which distinguishes our work
from many prior works. Building real systems requires, in addition to the engineering
effort, dealing with the complex interaction between communication and control.
However, such solutions are necessary to build trust and acceptance, ultimately leading
to a broader application. In the following, we give an overview of our contributions,
providing a road map for the thesis.

Part I: Networking Foundation

Efficient and scalable many-to-all communication (Chapter 2). State-of-the-art
communication protocols have various shortcomings when it comes to supporting
CPS. The communication is typically coordinated based on up-to-date information
about the network state, such as the network topology. However, mobile agents
and environment dynamics frequently change the topology and result in increased
coordination overhead. As systems scale up, using more agents and covering larger
areas, the overhead explodes and eventually affects the control performance. Moreover,
centralized designs and constrained traffic patterns, for example, one-to-all, poorly
support distributed control applications.

To address this problem, we have developed Mixer, a many-to-all communication
primitive for dynamic wireless multi-hop networks consisting of low-cost embedded
devices. Many-to-all communication is universal as it allows the realization of any
possible traffic pattern. Mixer’s novel combination of random linear network coding
(RLNC) and synchronous transmissions (ST) enables the efficient and topology-agnostic
distribution of information in dynamic networks. Thereby, it approaches the order-
optimal scaling behavior regarding the distributed information. Our evaluation shows
that Mixer improves latency, energy efficiency, and reliability compared with state-of-
the-art communication protocols.

This chapter is based on the following publication:

Carsten Herrmann★, Fabian Mager★, and Marco Zimmerling. “Mixer: Efficient Many-
to-All Broadcast in Dynamic Wireless Mesh Networks.” In ACM Conference on Em-
bedded Networked Sensor Systems (SenSys), pages 145–158, Shenzhen, China, 2018.
doi:10.1145/3274783.3274849.
★ Both authors contributed equally to this work.

Highly available and fault-tolerant wireless communication (Chapter 3). De-
pendability is one of the most critical requirements for CPS and requires, among other
things, the ability to cope with faults. For instance, individual device faults should
have no or only a minor impact on the message exchange between functioning de-
vices. However, Mixer and all other ST-based protocols, despite their exceptional

https://doi.org/10.1145/3274783.3274849

10 Chapter 1. Introduction

performance and several other benefits for wireless CPS, suffer from a single point of
failure. The reason is that a particular node starts the communication, providing a time
reference to the other nodes to meet the strict timing constraints of ST. A failure of this
node leads to a communication outage. This fundamentally impairs the availability of
the communication service in the presence of node failures and in case the network
splits into partitions.

We have addressed this problem with Butler, a distributed and lightweight synchro-
nization mechanism. Butler is used on demand and reliably synchronizes the nodes
in the network at low overhead. As a result, after executing Butler, all nodes can
start communication, which removes the single point of failure. Butler dramatically
increases the availability of ST-based protocols without affecting their performance.

This chapter is based on the following publication:

FabianMager, Andreas Biri, Lothar Thiele, andMarco Zimmerling. “Butler: Increasing
the Availability of Low-Power Wireless Communication Protocols.” In International
Conference on Embedded Wireless Systems and Networks (EWSN), pages 108–119, Linz,
Austria, 2022. https://dl.acm.org/doi/10.5555/3578948.3578958.

Part II: Wireless Cyber-Physical Systems

Feasibility of fast feedback control with stability guarantees (Chapter 4). Ex-
isting solutions that were evaluated in practice (see Table 1.1) are, for the most part,
limited to small single-hop networks. Those that support multi-hop communication
do not achieve the efficiency and dependability to control fast physical processes with
update intervals ranging from tens to a few hundred milliseconds [4]. In addition,
due to the many challenges of multi-hop communication, an analysis of the system’s
properties becomes complicated and prevents any guarantees in existing works.

To close this gap, we have developed a wireless embedded system based on a tight
co-design of communication and control. Our approach mitigates the wireless imper-
fections to the extent possible, considers the resulting communication properties when
designing the control system, and schedules the different run-time tasks to satisfy
real-time constraints. Thus, our solution is the first to provide fast feedback control
and coordination across real low-power wireless multi-hop networks. Moreover, we
analyze the end-to-end properties of our system, provide formal guarantees on its
closed-loop stability, and validate these guarantees on a real CPS testbed.

This chapter is based on the following publication:

Fabian Mager★, Dominik Baumann★, Romain Jacob, Lothar Thiele, Sebastian Trimpe,
and Marco Zimmerling. “Feedback Control Goes Wireless: Guaranteed Stability
over Low-power Multi-hop Networks.” In ACM/IEEE International Conference on
Cyber-Physical Systems (ICCPS), pages 97–108, Montreal, Quebec, Canada, 2019.
doi:10.1145/3302509.3311046. (Best paper award)

★ Both authors contributed equally to this work.

https://dl.acm.org/doi/10.5555/3578948.3578958
https://doi.org/10.1145/3302509.3311046

1.5. Contributions and Road Map 11

Efficient arbitration and allocation of communication resources (Chapter 5).

As CPS applications become ever more sophisticated and require, for example, more
agents, shorter update intervals, and higher-volume data streams, the generated traffic
will inevitably exceed the available network bandwidth. ETC and STC approaches
account for this by transmitting data only when needed, improving scalability and
enabling energy savings. However, an end-to-end solution that transfers those benefits
to multi-hop networks and that can reallocate freed-up bandwidth to additional agents
or other data sources is still missing.

Therefore, we have proposed control-guided communication, a novel co-design for
distributed STC over wireless multi-hop networks. Our control system predicts trans-
mission demands and informs the communication system ahead of time so that the
latter can allocate its resources most efficiently.

This chapter is based on the following publication:

Dominik Baumann★, Fabian Mager★, Marco Zimmerling, and Sebastian Trimpe.
“Control-Guided Communication: Efficient Resource Arbitration and Allocation in
Multi-Hop Wireless Control Systems.” IEEE Control Systems Letters, 4(1):127–132, 2020.
doi:10.1109/LCSYS.2019.2922188.
★ Both authors contributed equally to this work.

Stability guarantees under network overload (Chapter 6). Existing approaches
using ETC or STC, such as our contribution in Chapter 5, can significantly reduce
the generated control traffic on average. However, they cannot prevent overload
situations where all agents want to communicate simultaneously. These situations lead
to unpredictable message loss and make it impossible to provide stability guarantees
or performance bounds.

To solve this overload problem, we have presented a co-design of communication
and distributed control using a predictive triggering approach. The agents predict
their communication needs, based on the control objective and their states, in terms
of priorities. An efficient distribution of these priorities in the network enables the
dynamic arbitration of the available bandwidth to the agents with the highest need to
communicate their current state. We prove that our co-design guarantees closed-loop
stability for heterogeneous physical systems with stochastic linear time-invariant (LTI)
dynamics.

This chapter is based on the following publication:

Fabian Mager★, Dominik Baumann★, Carsten Herrmann, Sebastian Trimpe, and Marco
Zimmerling. “Scaling Beyond Bandwidth Limitations: Wireless Control With Stability
Guarantees Under Overload.” ACM Transactions on Cyber-Physical Systems, 6(3):20:1–
20:30, 2022. doi:10.1145/3502299
★ Both authors contributed equally to this work.

https://doi.org/10.1109/LCSYS.2019.2922188
https://doi.org/10.1145/3502299

12 Chapter 1. Introduction

Author Contribution Statement

This thesis is largely based on the results of the EcoCPS project, which is part of
the Priority Program 1914 on cyber-physical networking of the German Research
Foundation (DFG).

In the first part of this thesis, dealing with the networking foundation, all authors
were actively involved in formulating the research problems, developing the solutions,
evaluating the results, and writing the paper. The order of authors reflects their
contribution, with the first author being the main contributor unless otherwise noted.

Within EcoCPS, we have also worked closely together with Dr. Dominik Baumann and
Prof. Sebastian Trimpe from the Institute for Data Science in Mechanical Engineering
at RWTH Aachen. Their expertise in control systems has complemented our expertise
in wireless communication and embedded hardware/software design. Accordingly,
the contributions in the second part of this thesis, addressing the co-design of control
and communication, are joint efforts. Together we have formulated the research
goals, developed the overarching system design, particularly the interfaces between
communication and control, and built CPS testbeds to validate our approaches on
real physical systems and networks. Concerning the implementation and analysis of
the different CPS components, the author of this thesis primarily contributed to the
communication-related parts and the embedded engineering. By contrast, the equally
contributing author focused on the control-related parts.

Part I

Networking Foundation

2
Mixer: Efficient Many-to-All Broadcast

in Dynamic Wireless Mesh Networks

Preface

In the first part of this thesis, we focus on the networking foundation for wireless
CPS. State-of-the-art wireless communication protocols do not satisfy the diverse
needs of emerging CPS applications. There are many reasons for this, including that
the protocols are not designed for dynamic networks, scale poorly toward larger
deployments and higher traffic demands, or fail to meet the timing and reliability
requirements of feedback control applications.

To address these shortcomings, we present Mixer in this chapter, a many-to-all broad-
cast primitive for dynamic wireless mesh networks. Many-to-all communication has
the advantage that it is widely applicable and can serve any traffic pattern, an essential
requirement for efficient distributed control and adaptive CPS. To achieve an efficient
operation in real networks, we designMixer in response to the theory of RLNC and
the characteristics of physical layer (PHY) capture. Thus, Mixer approaches the order-
optimal scaling in the number of messages to be exchanged. Our evaluation shows that
Mixer outperforms the state of the art across all metrics by up to 3.8× and provides a
reliability greater than 99.99 %, even at a node moving speed of 60 km/h.

16 Chapter 2. Mixer: Efficient Many-to-All Broadcast

2.1 Introduction

Many-to-all broadcast is the process of disseminating information from one, multiple,
or all nodes to every node in a network. It is a universal communication primitive as it
can serve any possible traffic pattern (point-to-point, one-to-many, all-to-all, . . .), and
it is fundamental for a growing number of applications and network services involving
multiple sources and multiple destinations.

For example, closing distributed feedback loops in CPS relies on wireless communi-
cation among sensors (sources), actuators (destinations), and controllers (acting as
sources and destinations). To enable coordination in autonomous systems, such as
collaborative agents [86], robotic materials [33], and swarming drones [140], each node
needs to collect information (e.g., location) from every other node and disseminate its
own information to all others. Indeed, a certain class of closed-loop control problems
is only tractable if each node can make decisions with knowledge of the full system
state [22], requiring many-to-all communication.

The same need arises in support of programming abstractions [130] and fault-tolerance
mechanisms [156], for example, when some application logic is replicated across
multiple distributed devices and nodes need to report every message to all replicas [50].
The initial distribution of messages across sources depends on the application and can
also change dynamically at run-time. For instance, in drone-assisted disaster response,
all nodes need to regularly exchange one message with all others to prevent collisions
or to keep a desired flight formation [30], while sometimes one node may have multiple
messages to disseminate, such as an image taken with an on-board camera informing
a group of human rescuers on the ground [61].

To support these emerging applications, a many-to-all broadcast primitive needs to
meet the following key requirements:

• Fast and reliable: To reduce the impact on application performance and to keep
up with the dynamics of physical processes, many-to-all communication must
be fast (i.e., support end-to-end communication delays and intervals of a few
hundred milliseconds [4] or less) and also highly reliable [160].

• Support for dynamicmesh topologies: Rotating, flying, or otherwisemobile entities
cause significant network dynamics, while multi-hop communication and mesh
topologies are either beneficial or a necessity for the application scenario [18,
65, 108].

• Support for adequate message sizes: Many applications feature payloads that are
tens of bytes in size or larger [61, 108].

• Energy efficient: The employed devices are often battery-powered [4, 132] or
harvest energy from the environment [33]. Moreover, size and weight con-
straints call for small batteries, low-power radios, and resource-limited micro-
controllers [61, 132].

2.1. Introduction 17

Existing many-to-all solutions fall short of these requirements. Approaches based
on routing, such as WirelessHART, ISA100.11a, and RPL on top of TSCH (6TiSCH),
which exchange messages via an explicitly built and maintained structure, target
different scenarios with static nodes and packet intervals of several seconds [43]. Using
them for many-to-all broadcast may require many-to-one upward routing followed by
one-to-all downward routing, which suffers from scalability, efficiency, and reliability
issues [72]. Furthermore, since these solutions rely on a known and stable network
topology, they may fail in distributed or uncoordinated settings [59] and perform
poorly in the presence of mobile devices [49] or other network dynamics [157]. Some
recent proposals based on ST overcome this problem by decoupling the protocol logic
from the time-varying network topology. For example, Chaos works well for all-to-all
exchange of small payloads (e.g., one byte per node) as required for network-wide
consensus [5] and data aggregation [91], but performs inefficiently for payloads larger
than a few bytes [113]. A series of network-wide Glossy floods [48] is then a better
option; however, the required bandwidth and overall latency increase rapidly with the
number of messages to be exchanged.

Contribution and road map. This chapter presents Mixer, a new many-to-all
broadcast primitive for dynamic wireless mesh networks. Mixer supports the full
spectrum from one-to-all to all-to-all communication, and significantly outperforms
prior many-to-all solutions in latency, goodput, and radio-on time while providing
nearly perfect reliability despite significant network dynamics.

The key ideas behindMixer are as follows: a) Rather than performing𝑀 sequential
floods to disseminate𝑀 messages,Mixer overlays all𝑀 floods by letting nodes mix
packets using RLNC. This way, Mixer disseminates all 𝑀 messages at once and
approaches the theoretically optimal scaling as𝑀 increases. b)Mixer combines RLNC
with ST. While RLNC aims to maximize the utility of individual packets, ST aim to
maximize spatial reuse.

To exploit the synergy of both concepts for efficient many-to-all communication in real
wireless networks, we must tackle a number of challenges as outlined in Section 2.2.
Our design of Mixer, described in Section 2.3, addresses these challenges and yields
significant improvements compared to a straightforward combination of the two
concepts.

We prototypeMixer on the TelosB [138] (see Section 2.4), which has a IEEE 802.15.4
radio and a 16-bit MSP430 microcontroller, to allow for a fair comparison with the
state of the art on public testbeds. We also port compute-intensive parts of Mixer to
modern 32-bit ARM Cortex-M0+/M4 platforms to project the performance gains with
more processing power and faster PHYs, such as IEEE 802.11.

We evaluate Mixer in Section 2.5 using experiments on two testbeds with up to 94
nodes, on dynamic networks with failing devices and a mobile node attached to a
car driving 20–60 km/h, and through microbenchmarks on four different platforms.
We find thatMixer is up to 3.8× faster and more efficient than fine-tuned sequential

18 Chapter 2. Mixer: Efficient Many-to-All Broadcast

Glossy floods and provides a reliability greater than 99.99 % even in the presence of
node mobility. For example,Mixer achieves a goodput of up to 53.7 kbps and needs
less than 300 ms to exchange 27 60 B messages in an all-to-all fashion on FlockLab [99].
Our microbenchmarks indicate that the same scenario would take less than 10 ms
when runningMixer on faster CPUs and PHYs.

In summary, this work contributes the following:

• Mixer, a many-to-all broadcast primitive that approaches the order-optimal
scaling in the number of messages in real dynamic wireless mesh networks.

• A design that combines RLNC with ST and thereby enablesMixer to perform
efficiently in practice, while being highly reliable and resilient to network dy-
namics.

• An open-source implementation and experiments demonstrating several-fold
performance gains over the state of the art.

2.2 Overview

This section introduces relevant concepts and provides an overview of Mixer’s oper-
ating principle, scope, and key design challenges.

2.2.1 Basic Operation and Terminology

The principle behind Mixer’s operation is best explained by an analogy with flooding.
Assume a set of𝑀 messages is to be exchanged between 𝑁 nodes. Using sequential
flooding, this takes 𝑂 (𝑀 · 𝑇), where 𝑇 is the time needed to flood a single message.
Although protocols like Glossy [48] achieve the theoretically minimum 𝑇 in practice,
the scaling with factor 𝑇 becomes problematic as 𝑀 grows. Mixer improves the
scaling to 𝑂 (𝑀 +𝑇) by considering all 𝑀 messages together: Rather than performing
𝑀 floods in sequence,Mixer overlays the𝑀 floods and simultaneously disseminates
all messages. To this end, nodes mix packets using RLNC and transmit random linear
combinations of previously received packets.

Mathematically speaking, each Mixer node maintains a system of linear equations
given in (2.1). ⎛⎜⎜⎝

𝑝1
...

𝑝𝑀

⎞⎟⎟⎠⏞⏟⏟⏞
coded

payloads

=
⎛⎜⎜⎝
𝑐11 · · · 𝑐1𝑀
...

. . .
...

𝑐𝑀1 · · · 𝑐𝑀𝑀

⎞⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
coding matrix

·
⎛⎜⎜⎝
𝑚1
...

𝑚𝑀

⎞⎟⎟⎠⏞⏟⏟⏞
messages

(2.1)

The set of messages𝑚1, . . . ,𝑚𝑀 forms a generation of size𝑀 . Mixer nodes exchange
linear combinations of these messages, that is, the 𝑖th packet’s payload equals 𝑝𝑖 =∑︁
𝑘 𝑐𝑖𝑘𝑚𝑘 , with 𝑐𝑖 = (𝑐𝑖1, . . . , 𝑐𝑖𝑀) the coding vector of packet 𝑖 . A sender transmits 𝑐𝑖

together with 𝑝𝑖 in the same packet. A receiver extracts 𝑐𝑖 and 𝑝𝑖 from the packet and

2.2. Overview 19

Figure 2.1: Real trace of Mixer in a 2-hop IEEE 802.15.4 network with 5 nodes exchanging
5 messages in an all-to-all fashion. Numbers indicate when the rank of the coding matrix 𝐶
at each node increases and are equal to the current rank. Each node can receive at most one
packet per slot. Symbols in the upper corner mark which node received what packet in case

there are multiple transmitters in the given slot.

maintains the coding matrix 𝐶 . When 𝐶 reaches full rank (i.e., a node has collected
𝑀 linearly independent packets), then (2.1) has a unique solution and the node can
decode all messages by solving the system of linear equations. Sending nodes build
packets by adding up a random subset of already collected rows (𝑝𝑖 and 𝑐𝑖) of (2.1),
which is possible irrespective of 𝐶’s rank. All computations are performed over the
finite field GF(2). As a consequence, the size of 𝑐𝑖 is𝑀 bits (one bit per 𝑐𝑖𝑘).

Figure 2.1 shows a trace from a 2-hop IEEE 802.15.4 network as 𝑁 = 5 nodes exchange
𝑀 = 5 messages in an all-to-all fashion using Mixer; that is, initially each node has its
own (one) message, and the goal is that every node acquires the (four) messages from
the other nodes. The operation of Mixer, called round, proceeds in a series of adjacent
slots. Node 1, the initiator, starts the round by transmitting (Tx) its message in slot 1,
which is received (Rx) by nodes 2, 3, and 5. Since the packet contains a message that
they did not know before, the rank of their coding matrix𝐶 increases from 1 to 2. As a
result of this, nodes 2, 3, and 5 may now start to mix packets using RLNC and transmit
linear combinations of multiple messages. Note that the use of RLNC allows the nodes
to pick the coefficients of 𝑐𝑖 randomly without any knowledge of the current network
topology.

Every time a node receives an innovative packet—one that is linearly independent from
all previously received packets—the rank of the coding matrix𝐶 increases. Once𝐶 has
full rank, all messages can be decoded using, for example, Gaussian elimination. In the
example of Figure 2.1, node 2 is the first to reach full rank in slot 9.

We also see in Figure 2.1 that often multiple nodes transmit in the same slot. This
happens for the first time in slot 3; however, both node 1 and node 2 receive despite
the collision. While traditional solutions try to avoid collisions using carrier sensing,
handshaking, or scheduling, Mixer and several other recent proposals (e.g., [48, 143])
aim to take advantage of collisions to improve spatial reuse. Since nodes in Mixer
typically transmit different packets (as they mix messages randomly), a common
receiver can successfully receive one of the packets only due to the capture effect [94,
102].

20 Chapter 2. Mixer: Efficient Many-to-All Broadcast

The capture effect occurs if certain signal power and timing conditions are met. For
instance, using IEEE 802.15.4 radios operating in the 2.4 GHz band with OQPSK modu-
lation, the SINR at the receiver must exceed 3 dB and the packet with the strongest
signal must arrive no later than 160 µs after the first packet [91]. Although the exact
SINR and timing conditions are highly dependent on the concrete PHY, the capture
effect has already been exploited in many popular wireless technologies, including
Bluetooth Low Energy (BLE) [149], IEEE 802.11 [93], and IEEE 802.15.4 [102].

Scope. Although this work focuses on low-power embedded systems and IEEE 802.15.4,
in principleMixerworks on any PHY that features the capture effect. Moreover, unlike
analog network coding [81, 131],Mixer does not require any changes to existing PHYs
and hence runs on commodity low-power devices.

Similar to Glossy [48] and other recent works [41, 42, 91], Mixer is a communication
primitive that conceptually sits between the PHY and a higher-layer protocol. This
higher-layer protocol is responsible for informing all 𝑁 nodes about the (dynamically
changing) initial distribution of 𝑀 messages to nodes before eachMixer round. Al-
ternatively, Mixer can also be used with a statically configured initial distribution.
Determining such distributions and building generations of messages is beyond the
scope of this work, but existing techniques can be used [64, 98] and coupled with
existing higher-layer protocols (e.g., Low-Power Wireless Bus (LWB) [49] and 𝐴2 [5])
that readily support the network-wide scheduling of Mixer rounds.

2.2.2 Design Challenges

Theoretical results suggest that RLNC-based gossip protocols like Mixer perform
optimally in static and dynamic networks [36, 60]. Specifically, it has been shown that
the number of slots needed to disseminate all𝑀 messages has order-optimal scaling
𝑂 (𝑀 + 𝑇) [60]. This result is based on specific connectivity measures of the (time-
varying) network graph, and the constant factors hidden by the 𝑂-notation heavily
depend on these properties. In Mixer, the connectivity of the wireless network is
tightly coupled to the extent to which the capture effect can be exploited and changes
from one slot to the next even if nodes are stationary. Our overarching goal in designing
Mixer is to combine RLNC and ST such that the constants hidden in 𝑂 (𝑀 +𝑇) are as
small as possible. This entails addressing four main challenges:

C1: When should a node send or listen? A capture threshold of 3 dB is quite small,
so there is a good chance to benefit from capture in practice. However, because of
the very same condition, the probability of capture drops rapidly as the number of
synchronous transmitters increases [102]. How can a node locally decide whether it
should send or listen in a slot, maximizing spatial reuse without destroying capture?

C2: What should a node transmit? To achieve low latency (i.e., small number of slots),
we must devise a policy that allows senders to easily build packets that are likely
innovative for their neighbors even if the nodes are mobile (i.e., neighborhood changes
quickly).

2.2. Overview 21

Figure 2.2: Average rank increase in a one-to-all scenario on FlockLab with different feature
sets (𝑀 = 27 messages).

C3: How to ensure ST in the absence of a global clock? To meet the timing condition of
capture, nodes must communicate in a globally slotted fashion (see Figure 2.1). This is
difficult because nodes spend varying amounts of time on processing in each slot (e.g.,
when building the next transmit packet), which impairs synchronization in the face of
different clock drifts across nodes.

C4: How to achieve an efficient run-time operation? RLNC improves the utilization of
the wireless medium (i.e., helps reduce the number of slots), but requires nodes to store
and process the coding vector and payload bytes of the packets. Limited memory and
compute power may hinder harnessing these benefits (e.g., by blowing up the length
of the slots), so we need to design efficient coding and decoding strategies, which are
preferably running in parallel to radio activities whenever possible. Moreover, nodes
need a way to locally figure out whether they are still helpful for the dissemination
process or can turn off their radio to save energy.

2.2.3 Phases Within aMixer Round

Before describing the design of Mixer in detail, we illustrate its effectiveness in
addressing challenges C1 and C2—the when and what to transmit—via a comparison
with a naïve application of RLNC, where every node sends packets at random with a
fixed transmit probability 𝑃TX and builds packets by randomly summing up already
collected rows. Figure 2.2 shows the average rank increase across 27 nodes on the
FlockLab testbed [99] for the random approach (including our mechanisms to address
challenges C3 and C4) and when all design features of Mixer are enabled. Despite
the fact that Mixer reduces the number of slots required to reach full rank (27 in this
scenario) from 320 to 120, we can distinguish four distinct phases, which are most
apparent in the purely random approach.

In the middle we see a phase with almost linear behavior, emphasized by the dashed
line. We refer to this as the operating phase since the rate of average rank increase is
high and steady. Before comes a startup phase with less but increasing rank growth.
After the operating phase follows a time with decreasing rank improvements. We call
this the completion phase as it eventually leads to all nodes reaching full rank. Last,

22 Chapter 2. Mixer: Efficient Many-to-All Broadcast

there is a finalization phase where nodes still communicate but no longer depend on
incoming packets.

The poor performance of the random approach, especially during the startup and
completion phases, induces questions on the reasons for the observed behavior and
potential improvements. Consequently, these questions drive the discussion in Sec-
tion 2.3. As visible in Figure 2.2, our design of Mixer improves significantly on the
purely random approach, effectively addressing challenges C1–C4.

2.3 Design

This section describes the architecture of Mixer and discusses all major design ele-
ments. In Section 2.3.1 we introduce the core architecture of Mixer, which consists of a
transport layer and a processing layer. Since the latter contains the most characteristic
features of Mixer, we present it first in Section 2.3.2. It combines two core mecha-
nisms (Section 2.3.2.1 and Section 2.3.2.2) with a number of phase-related features
(Section 2.3.2.3 to Section 2.3.2.5), systematically addressing challenges C1, C2, and
(partially) C4. In Section 2.3.3 we present important mechanisms of the transport
layer targeting challenges C3 and C4. We conclude with a short list of other design
properties facilitating C4 in Section 2.3.4.

2.3.1 Core Architecture

To significantly exploit the capture effect, the design of Mixer incorporates two key in-
gredients: well-synchronized, time-slotted communication to meet the capture window
and a lightweight but effective mechanism to steer the set of active transmitters per
time slot. From a single node’s perspective, these two design elements are responsible
to decide when to transmit (and when to receive). Their counterpart is composed of
a number of mechanisms influencing what to transmit with the particular goal to
improve the efficiency of RLNC in the given scenario. Most of the components interact
with each other; Mixer represents the entirety of all design elements, translated to an
appropriate software architecture.

The timing conditions of capture suggest the encapsulation of the low-level packet trans-
port functionality in a self-contained component that provides reliable synchronous
packet exchange. Mixer follows this approach with a two-layer architecture composed
of a time-triggered transport layer and an event-triggered processing layer (Figure 2.3a).
The layers are decoupled by receive and transmit queues, allowing a high degree of
parallelized activities on both layers. Figure 2.3b shows the main activities on each
layer within the slots. Each slot has the same fixed length 𝑇𝑠 , which accounts for the
air time 𝑇𝑎 of one packet and processing time 𝑇𝑝 . By default, the transport layer is in
receive mode. Transmit decisions are made by the processing layer and passed to the
transport layer on demand, which executes them in the next slot.

2.3. Design 23

(a
)C

or
e
ar
ch
ite

ct
ur
e.

(b
)R

ad
io
,t
ra
ns
po

rt
la
ye
r,
an
d
pr
oc
es
si
ng

la
ye
ra

ct
iv
iti
es

w
ith

in
ea
ch

sl
ot
.

Fi
gu

re
2.
3:
So
ftw

ar
e
ar
ch
ite

ct
ur
e
an
d
in
te
ra
ct
io
ns

be
tw

ee
n
de
si
gn

co
m
po

ne
nt
si
n
ea
ch

M
ix
er

no
de
.

24 Chapter 2. Mixer: Efficient Many-to-All Broadcast

Figure 2.4: Mixer’s packet format. Parts in gray are defined by IEEE 802.15.4, CRC is
generated by the radio. Sizes in bytes.

Figure 2.4 shows the packet format. Note that the payload field contains a linear
combination of messages, so its size 𝑆𝑝 is equal to the message size. The packet size,
instead, also accounts for all other fields, such as the size of the coding vector 𝑆v.

2.3.2 Processing Layer

In the following subsections we detail the individual design mechanisms of Mixer.
The transport layer is considered in Section 2.3.3; for the moment we assume it to
be working such that we can take slots as the base unit of the communication grid.
We start from the baseline of the purely random approach introduced in Section 2.2.3.
The discussion is driven by the question on how to improve on the observed results,
particularly with respect to the identified phases (Figure 2.2).

2.3.2.1 Semi-Coordinated Transmissions

Since real-world and in particular dynamic networks have varying local node densities,
a fixed transmit probability 𝑃TX performs unsatisfactory (Figure 2.2). An adequate
policy should adapt 𝑃TX to the local densities, striving for the goal to maximize the
number of received packets per slot within the network. To reach this objective, the
number and selection of transmitters in each slot should be well balanced—high enough
and spatially distributed to reach as many receivers as possible, but still low enough to
allow the capture effect to occur.

For this purpose, eachMixer node maintains a list of received SenderIDs (Figure 2.4)
within the last 𝐻 slots. Using this sliding-window history information, which is
discarded at the end of a round, nodes monitor their current neighborhood to drive an
adaptive transmit policy as shown in Algorithm 1. This policy updates the transmit
probability 𝑃TX of a node depending on the estimated local node density𝑑 . Furthermore
it incorporates a kind of local round-robin scheduling on a selected subset of slots
by assigning an owner to each slot. Owners use their slots to transmit for sure while
neighbors respect this behavior.

The level of determinism induced by this policy increases with node density because a
higher density means that a larger portion out of 𝑁 consecutive slots is owned by some
node within a neighborhood (in return, the number of shared slots is lower). Hence, in
high-density regions of the network nodes use stronger coordination than in sparsely
populated areas. In this way, we effectively reduce the uncertainty in the expected
number of transmitting nodes per slot and decouple the capture probability from the
node density (see C1). This behavior also implies that Mixer does not purely depend

2.3. Design 25

Algorithm 1 Semi-coordinated Transmission (core algorithm)
1: 𝑑 ← 1 + num_neighbors ⊲ local density (from history)
2: owner ← (slot_no + 1) mod 𝑁 ⊲ assign owner to next slot
3: if owner = my_node_id then ⊲ if my slot: transmit
4: 𝑃TX ← 1
5: else if owner is neighbor then ⊲ if foreign slot: receive
6: 𝑃TX ← 0
7: else if Tx in current slot then ⊲ do not transmit twice in a row
8: 𝑃TX ← 0
9: else ⊲ if shared slot: transmit with probability
10: 𝑃TX ← 1 / (𝑑 + 1) ⊲ (+1 accounts for an unknown neighbor)

on the capture effect; for example, in a one-hop network, Mixer would tend toward a
fully coordinated operation, where nodes transmit one after another in dedicated slots.

2.3.2.2 Explicit Innovation Forwarding

A sender assembles a packet using RLNC: It adds every row from its matrix to the Tx
packet with probability 0.5. InMixer we add several features somewhat restricting
the randomness to improve average performance. The most basic one rests upon the
assumption that an innovative packet is also innovative for a node’s neighborhood.
Thus, a node adds every innovative packet immediately to the prepared Tx packet so
the innovation gets relayed with the next transmission for sure.

To thoroughly justify this behavior, we distinguish two cases: If the innovative packet
arrives from outside the common neighborhood (cluster), the above assumption is
clearly reasonable. Otherwise, if the packet is sent from inside the cluster, there is still
a chance that it is innovative for some neighbor(s). On the other hand, including it has
no disadvantage for the other neighbors: Since the packet is innovative for the current
node, it is linearly independent from its Tx packet (i.e., including it corresponds to
adding an additional matrix row). Note that this behavior influences only the content
of the next Tx packet (what), not the transmit policy (when).

2.3.2.3 Improving Startup: Adapted Coordination

The reasons for a slow startup phase (Figure 2.2) are best understood with a one-to-all
scenario in mind. In this case, all messages reside at the initiator at the beginning
of a round. After it started the round, the awoken neighbors are not able to add any
innovation to the packets they send as they simply do not have any. Innovation can
only be added by the initiator if it decides to transmit and if the (randomly built)
packets include some. Clearly, the situation will improve a) if the initiator ensures
that it sends something innovative, and b) if there is a mechanism that prioritizes the
transmissions of the initiator at the beginning of a round. Again, a) and b) address the
when and what to transmit.

26 Chapter 2. Mixer: Efficient Many-to-All Broadcast

Improving the number of innovative packets during the startup phase is easy: Since
every message is initially available at exactly one node, its originator, this node knows
that a packet will be innovative for all other nodes if it incorporates the message for the
first time. Hence, if a node initially has 𝑥 messages, it can easily generate 𝑥 innovative
packets by simply transmitting each of its 𝑥 messages once. Mixer nodes do exactly
this before starting to build packets at random.

Prioritizing the transmission of innovative packets requires adaptations of the transmit
policy since there is no connection to packet contents so far. Mixer bridges this gap
by assigning the owner role of slot 𝑘 to the originator of message 𝑘 during the first𝑀
slots. Thus, in case of a perfect wake-up order of all nodes, every slot 𝑘 ≤ 𝑀 is used to
transmit message 𝑘 by its originator, generating a fast-growing coding potential. As
a side effect, this rule circumvents the question on how the standard transmit policy
performs as long as the history information is very incomplete.

However, using this strategy, we have to cope with two issues: First, if the originator
of message 𝑘 is not awake in slot 𝑘 , the slot is unused. This can lead to corner case
situations in which nothing happens for a long time. Mixer avoids this problem by
including the shared slot rule (cf. Algorithm 1) also during the startup phase, but with
𝑃TX = 1/min(𝑘, 16) which is independent of 𝑑 and stimulates a fast wake-up of all
nodes. Second, in one-to-all scenarios the initiator would transmit in every of the𝑀
startup slots and hence would have no chance to discover its neighbors. Further, if its
neighbors stay silent the whole time, nodes farther away would not wake up. Mixer
avoids this problem with the help of a flag (used only during startup): If a node sending
in slot 𝑘 is also the originator of message 𝑘 + 1, it marks this in the packet header’s
flags field and stays silent in slot 𝑘 + 1. Nodes receiving the packet in slot 𝑘 then know
that the owner of slot 𝑘 + 1 will not use its slot. Thus, they transmit with 𝑃TX = 1 in
slot 𝑘 + 1 to push packets into their “back country.”

2.3.2.4 Improving Completion: Active Requests

In the completion phase we see a significant slowdown in the average rank increase
with the purely random approach (Figure 2.2) due to the well-known coupon collector’s
problem [35, 47]. It is present here because a node cannot include messages that are
outside the row space of its current matrix. Since there is a high probability that the
missing pieces are also missing at a considerable number of neighbors, it is difficult to
resolve the situation efficiently without any feedback on the missing pieces. Mixer
nodes address this problem by progressively providing such feedback in the form of
active requests and by adapting their transmit policy in response to these requests.

Recall that a node requires rank 𝑀 to recover all messages, that is, 𝑀 linearly inde-
pendent rows in the coding matrix 𝐶 in (2.1). Mixer nodes keep 𝐶 in row echelon
form. Therefore, rows can be identified with their pivot elements (the main diagonal
of 𝐶): If 𝑐𝑖𝑖 is zero, then row 𝑖 is missing. Below, we describe how Mixer deals with
missing rows. Mixer also includes mechanisms to deal with missing columns, which

2.3. Design 27

are conceptually similar, but we do not discuss them here due to space limitations. For
the same reason, we skip minor details and instead focus on the main concepts.

The transition from the operating to the completion phase is floating and encompassed
by a simple rule which provokes an increasing number of active requests when a node’s
rank tends toward full rank. Every request is communicated in the form of a flag and
corresponding markers in the InfoVector field (Figure 2.4) of a packet that is anyway
being sent; thus, requests do not consume extra packets or slots. If a node receives
active requests, it has to decide how to react, which again translates into the questions
of what and when to transmit. Before answering these two questions, we discuss how
a node stores requests. Storing them is wise since it may be possible to help multiple
nodes with one response packet.

In case of a request, InfoVector contains a bit field wherein each set bit marks one
missing row. Nodes could store every received request separately, but this may consume
a considerable amount of memory and slow down processing. Instead,Mixer nodes
maintain an any-mask and an all-mask. If a request arrives, they OR the bit field to
the any-mask and AND it to the all-mask. Thus, the all-mask contains bits that have
been set in all incoming requests, while the any-mask contains bits that have been
set in at least one request. This way, nodes get an idea of which rows might be more
helpful than others. In addition to storing requests, nodes monitor the traffic and try
to discover if pending requests got serviced. If not, they drop the stored requests after
three slots so they do not affect the communication for a long time.

In case of pending requests, a node decides what to transmit as follows: It selects a
requested row index from the all-mask or, if the all-mask is empty, from the any-mask.
Then it tries to build a packet whose coding vector contains no non-zero elements to
the left of the selected index. If this is possible, the packet is definitely innovative for
the requesting node. In this case, a node is a helper. Otherwise, if a node cannot build
such packet, it is a non-helper and it does not matter what it sends. Instead, it should
consider not to send, which brings us to the question on when to transmit.

Extending the transmit policy with rules for request handling is nontrivial. We pursue
three goals: a) Potential helpers should send preferred while non-helpers should
decrease their transmit probability 𝑃TX . b) NodeID-based owner roles should be more
and more dissolved toward the end of a round in favor of helper/non-helper roles.
c) Phases without pending requests should be unaffected. With these goals in mind,
choosing 𝑃TX breaks down into three tasks:

1) Identify own role: helper or non-helper.

2) Estimate role of all 𝑛 neighbors respectively the number of helpers 𝑛+ and
non-helpers 𝑛− = 𝑛 − 𝑛+.

3) Adapt 𝑃TX based on 𝑛+, 𝑛− , and original owner role.

Step 1) is explained above. For step 2) we need some heuristic since it is impossible for
a node to determine the required information precisely. In fact, we do not even know

28 Chapter 2. Mixer: Efficient Many-to-All Broadcast

Table 2.1: Transmit probabilities with requests pending.

Own Slot Foreign Slot Shared Slot

𝑃TX Helper 𝑟/𝑛+ + (1 − 𝑟) 𝑟/𝑛+ 1/𝑛+
𝑃TX Non-Helper 𝑟/(e𝑛−) + (1 − 𝑟) 𝑟/(e𝑛−) 1/(e𝑛−)

if all neighbors process the same request masks, though this appears as a reasonable
assumption at least for the majority of neighbors. A simple heuristic could estimate 𝑛+
as a fixed percentage of 𝑛. To get more precise estimates, we design a more advanced
variant which uses an additional prerequisite: Since the InfoVector field is sent with
every packet anyway, the nodes always utilize it to transmit their current row state.
Receiving nodes store this information in their history such that every node has
a reasonably up-to-date information on the row state of its neighbors. Using this
information, a Mixer node is able to estimate 𝑛+ (and hence 𝑛−) more precisely.

The adaptation of 𝑃TX in step 3) is based on the following reasoning. In expectation, one
helper should send a response packet. Thus, the transmit probability for helpers 𝑃TX+ =
1/𝑛+. The transmit probability for non-helpers 𝑃TX− should match the probability that
no helper sends a packet, that is,

𝑃TX− =

(︁
1 − 1

𝑛+

)︁𝑛+
𝑛 − 𝑛+

𝑛+→∞−−−−−−→ e−1

𝑛 − 𝑛+
=

1
e𝑛−

(2.2)

The numerator in (2.2) converges fast, so it is sufficient to use the simplified term as
approximation. Since we do not want to break the original NodeID-based owner roles
abruptly, each node lets 𝑃TX slide based on its relative rank 𝑟 = 𝑟/𝑀 , leading to the
transmit probabilities listed in Table 2.1.

2.3.2.5 Improving Finalization: Smart Shutdown

From a single node’s perspective, the main communication task is accomplished when
reaching full rank. The remaining slots are needless for that node, but may be useful
to support unfinished neighbors. Though, at some point in time all neighbors have
full rank and there is no reason to stay active; the node could turn off to save energy.
However, we need a prudent signaling mechanism to establish an efficient but cautious
shutdown of the nodes.

If a node has full rank, it sets a flag in every packet it sends. Receiving nodes mark
the full rank status in their history. A node can shutdown if all its neighbors reached
full rank. It informs its neighbors by sending a packet with a shutdown flag set before
it turns off. The shutdown flag allows a neighbor to immediately remove that node
from its history, leading to an immediate adaptation of its transmit policy. Without
the flag, the update would be delayed until the vanished node falls out of the history
window 𝐻 .

2.3. Design 29

Since the packet with the shutdown flag is sent only once, it could easily get lost at
some neighbors, but it is received with high probability by at least one neighbor. We
address this issue with two mechanisms: First, on receiving a packet with the full-rank
flag set, the history window applied to the sending node gets shortened (we use 𝐻/3 in
Section 2.5) based on the expectation that the node may shutdown in the near future.
Second, the full-rank status of all nodes is actively propagated through the network
with the help of full-rank nodes. Since those do not have the need to provide request
information, they use the InfoVector field to mark finished nodes instead. With this
mechanism it is very unlikely that a full-rank hint gets lost. Although this does not
replace lost shutdown flags, it enables finished nodes to shutdown themselves instead,
which eventually leads to the same result.

2.3.3 Transport Layer

2.3.3.1 Establishing the Slot Grid

On the packet transport layer we have to solve the task of establishing a reliable slot
grid as a prerequisite for ST. Since system parameters are known in advance, it is
possible to select a fixed nominal slot length 𝑇𝑠 . Unfortunately, real-world hardware
suffers from clock frequency offsets, so we need some mechanism that compensates for
such effects and avoids that grid points drift apart among nodes. As a natural solution,
we implement a phase-locked loop.

The reference signal of the phase-locked loop is built from timestamps taken on the
reception of start of frame delimiter (SFD) fields, which is part of the synchronization
header of each packet (see Figure 2.4). This requires that senders start transmissions
with appropriate temporal accuracy, which is typically achieved via meticulous timer
polling. The phase difference between the reference signal and the local slot grid
is low-pass filtered and fed into a proportional-integral controller that computes a
correction term for the next grid point and a start offset for transmissions (the latter
counteracts a potential cumulative drift induced by time-of-flight delays). All filter
coefficients and gain parameters are chosen empirically based on simulations and
results from testbed experiments.

In principle it is possible to consider only SFD timestamps that stem from specific
neighbors (e.g., predefined ones or those with minimum hop distance to the initiator).
Our experiments suggest that taking reference values from arbitrary nodes is sufficient
and works most of the time. If it sporadically fails, a node recognizes this situation
and resynchronizes itself as part of a fallback mechanism.

We want to emphasize that the slot grid is only needed during a round (i.e., when
Mixer is active). Mixer does not require to keep the slot grid between rounds. In fact,
eachMixer node except the initiator assumes to be out of sync at the beginning of a
round. To lock onto the slot grid, a node activates its receiver continuously until it
receives the first valid frame. The maximum length of this initial listen phase is only
limited by a timeout for the whole round. This timeout is chosen by the user and can be

30 Chapter 2. Mixer: Efficient Many-to-All Broadcast

set to a large value (e.g., in the range of seconds or even infinity), effectively decoupling
the timing requirements of Mixer from the rest of the system. At the end of a round,
each node returns a reference time, which can be used (e.g., by a higher-level protocol)
to schedule the next round.

2.3.3.2 Updating Packets via On-the-Fly Sideload

Immediately forwarding innovation as described in Section 2.3.2.2 seems to be easy
from a conceptual point of view, but it appears ambitious when looking for an efficient
implementation. The reason is a hard time constraint which becomes clear when
considering the transition from a receive to a transmit slot (Figure 2.3b). To achieve an
optimal performance, the slot length 𝑇𝑠 should be as small as possible (bounded by 𝑇𝑎
plus a minimal overhead for pre- and postprocessing). On the other hand, updating
the transmit packet takes time (process received packet, determine if innovative, if so:
add) and has to take place (theoretically) between end of Rx and start of Tx.

With Mixer, we introduce a feature that allows to solve this problem in an elegant
and efficient way. First, if a node transmits a packet, it always starts the radio before
filling the radio chip’s transmit buffer. This is possible because the transmitter needs
to generate a number of synchronization symbols (despite some device specific tasks,
denoted OSC in Figure 2.3b) before it sends the actual data, which provides some
time for the program. As a result, a processing task can change the packet content
until right before the slot starts (irrespective of the packet size). Second, our low-level
transmit routines allow to add additional data to the packet content while the packet is
moved to the transmit buffer. In other words, they allow to sideload a second payload
into the transmit data stream on-the-fly. This second payload is incorporated into the
transmit data during very short, anyway required waiting periods in the transfer loop
and hence incur no extra CPU load—it literally comes for free.

With the help of the sideload feature, it is easy to solve the immediate update problem:
Every time a packet is received, the Rx routine marks it as the current sideload, so it
gets added to the next Tx packet. If it is innovative, the Tx packet carries the innovation.
If not, it does not hurt the Tx packet (by neutralizing its coding vector to zero) with
high probability. If this happens anyway, the transmission is aborted before it becomes
“visible in the air.”

Besides innovation forwarding, the sideload feature also simplifies interlocking critical
activities between the transport layer and the processing layer. Overall, it proves to be
a very useful tool.

2.3.4 Efficient Run-Time Operation

Besides the features described above, we facilitate an efficient run-time operation of
Mixer by:

• computing over finite field GF(2), which enables an efficient implementation on
standard hardware and needs just one bit per message in the coding vectors;

2.4. Implementation 31

• keeping the coding matrix in row echelon form, which limits the amount of
memory needed for storing packets, reveals useful information for free (e.g., the
rank of the matrix), and spreads computational load across multiple slots;

• parallelizing radio and CPU activities, which boosts performance by allowing to
reduce the slot length to the minimum.

2.4 Implementation

We prototypeMixer on TelosB [138] devices running at 4 MHz CPU clock rate. Our
implementation is publicly available at https://mixer.nes-lab.org and comprises
about 7900 lines of C code, where 3500 lines account for the hardware abstraction
layer. The compiled program has a footprint of 21 kB in flash and 300 B in RAM (w/o
stack, Rx/Tx queues, matrix, history, and request masks). With payload size 𝑆𝑝 , coding
vector size 𝑆v = ⌈𝑀/8⌉, and packet size 𝑆 = 12 + 2 · 𝑆v + 𝑆𝑝 (see Figure 2.4), the amount
of RAM needed for the variable-sized elements can be approximated1 as follows:

𝑚[B] = 5 · 𝑆⏞⏟⏟⏞
queues

+ 𝑀 · (𝑆v+𝑆𝑝+2)⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
matrix

+ (𝑁 +9) · 𝑆v⏞ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ⏞
request masks

+ 4 · 𝑁⏞⏟⏟⏞
history

(2.3)

Using Mixer requires choosing the slot length 𝑇𝑠 based on the payload size 𝑆𝑝 and
the generation size𝑀 . To achieve good performance, 𝑇𝑠 should be small. However, as
visible in Figure 2.3b, 𝑇𝑠 is lower-bounded by the minimum time needed for low-level
packet transport �̃�𝑎 and by the time taken by the processing layer 𝑇𝑝 . We profiled our
code to derive formulas for both bounds that make it easy to find a reasonable value
for the slot length 𝑇𝑠 ≥ max(�̃�𝑎,𝑇𝑝).

The low-level packet transport time can be expressed as

�̃�𝑎 [µs] = (440 + 32 · 𝑆) · 1.037 (2.4)

which accounts for the packet air time (i.e., 32 µs per byte in IEEE 802.15.4 networks)
and a static overhead for basic buffer handling and RF oscillator calibration. The
multiplier in (2.4) matches internal tolerance settings; the chosen values compensate
for clock drift of up to 1000 ppm. Further, the processing time reads as

𝑇𝑝 [µs] = 600 + (26 + 0.155 · (𝑆v + 𝑆𝑝)) ·𝑀 + 1.8 · 𝑆 (2.5)

A value determined using (2.5) ensures that the processing layer can handle the stream
of packets on average; temporary overload is compensated by the Rx queue (see
Figure 2.3).2

1Eqn. (2.3) is simplified, in particular it ignores padding bytes introduced for alignment purposes and
some small internal data elements like flags.

2Rearranging (2.5) gives 𝑇𝑝 ≈ 0.02𝑀2 + 27𝑀 + 0.16𝑆𝑝𝑀 + 1.8𝑆𝑝 + 620, which reveals a quadratic
dependency on the generation size𝑀 . However, for realistic values of𝑀 the linear term clearly dominates
due to the coefficients. This is mainly because processing happens in machine words, not bits.

https://mixer.nes-lab.org

32 Chapter 2. Mixer: Efficient Many-to-All Broadcast

Figure 2.5: Low-level packet transport time �̃�𝑎 and processing time 𝑇𝑝 depending on the
number of messages𝑀 (i.e., generation size) for a payload size of 60 B.

Figure 2.5 plots (2.4) and (2.5) against the generation size𝑀 for a payload size of 60 B.
We see that the crossover point is for𝑀 =75 messages. For smaller𝑀 ,Mixer effectively
processes packets at line rate, as the slot length is bounded by the packet air time and
therefore by the bitrate of the PHY.

2.5 Evaluation

Our evaluation answers the following questions:

• How doesMixer’s performance compare to the state of the art for different num-
ber of messages, message sizes, and initial message distributions (Section 2.5.1)?

• How robust isMixer to network dynamics caused by node failures (Section 2.5.2)
and node mobility (Section 2.5.3)?

• To what extent doesMixer benefit from faster CPUs and/or faster PHYs (Sec-
tion 2.5.4)?

2.5.1 Performance

We compareMixer against the state-of-the-art many-to-all solution based on sequential
flooding, called S-Glossy. To implement S-Glossy, we use the original Glossy code3,
which achieves the minimum latency for flooding a single message in IEEE 802.15.4
networks [48]. Note that S-Glossy is equivalent to a data-only round in LWB [49]. It has
already been shown [49] that LWB greatly outperforms routing-based many-to-many
solutions [130], rendering a comparison against such schemes obsolete. Similarly,
results from our work-in-progress reports show that an earlier version of Mixer
outperforms Chaos for messages larger than a few bytes [113, 114]. Other RLNC-
based many-to-all approaches like [36, 51] provide only theoretical or simulation
results and are not applicable to practical wireless mesh networks because the assumed
communication models do not fit. See our discussion in Section 2.7 for more details.

3The source code of the original Glossy implementation for the TelosB platform is available at
https://sourceforge.net/p/contikiprojects/code/HEAD/tree/ethz.ch/glossy/.

https://sourceforge.net/p/contikiprojects/code/HEAD/tree/ethz.ch/glossy/

2.5. Evaluation 33

Testbeds. We run experiments on two testbeds. On FlockLab, we use 27 TelosB [138]
nodes sparsely deployed across one floor in an office building [99]. Indriya features 94
devices densely deployed across three floors [40]. Nodes transmit at maximum power
(0 dBm) on channel 26, yielding a network diameter of 4 and 8 hops on FlockLab and
Indriya, respectively. Both testbeds experience interference from devices affecting the
2.4 GHz band, such as microwaves ovens and Wi-Fi, Bluetooth, and BLE devices. Each
run lasts 30–60 min.

Metrics. Reliability is the percentage of delivered messages (i.e., received and decoded
in case of Mixer). Latency is the time from the beginning of a round until all messages
are delivered (i.e., including the time needed for decoding inMixer). Goodput is the
number of delivered message bits per unit of time. Radio-on time, typically used as
a proxy for energy efficiency, denotes the accumulated time the radio is on during a
round. We report averages over all nodes and rounds during a run as well as 25th/75th
percentiles.

Parameters. We fine-tune S-Glossy based on several test runs so it achieves the
shortest possible latency at a reliability above 99.9 %. We set the slot length inMixer
as detailed in Section 2.4, and set the round length conservatively. The size of the
history window is 3 · 𝑁 . Since we always measured a reliability of 100 % withMixer
in the following experiments, we do not report this metric.

2.5.1.1 Impact of Message Size

To evaluate the impact of the message size, we run tests in which each node initially
has exactly one message (all-to-all). We consider message sizes of 10, 35, 60, 85, and
95/110 bytes. Note that 95 and 110 bytes are very close to the largest message sizes
that fit into an IEEE 802.15.4 packet given the overhead of Mixer’s header information
for 27 and 94 messages on FlockLab and Indriya, respectively. 4

Results. Figure 2.6 plots performance of Mixer and S-Glossy against message size.
We see that Mixer outperforms S-Glossy across all metrics and settings, by 2.3–
2.8× on FlockLab and by 1.4–3.8× on Indriya. The main reason is thatMixer needs
significantly fewer slots than S-Glossy (e.g., 95 vs. 260 on FlockLab): The combination
of RLNC and ST is more efficient in terms of communication. The range of performance
improvements on Indriya is wider than on FlockLab as a) with𝑀 = 94 messages the
slot length is determined by the processing time 𝑇𝑝 , which limits the improvement to
1.4× for small messages, and b) the larger network diameter allows for higher spatial
reuse, pushing the improvement up to 3.8× for large messages.

Looking at each individual metric, we find that latency, shown in Figure 2.6a, increases
linearly with message size because the slot length of both primitives increases linearly,

4The limited RAM on the TelosB would prevent us from running all-to-all experiments with messages
larger than 35 B on Indriya. Thus, for thesemessage sizes on Indriya, nodes do not store the transmitted full-
size payloads (i.e., only the coding vectors are stored), and instead perform cycle-accurate computations
on a fake payload.

34 Chapter 2. Mixer: Efficient Many-to-All Broadcast

(a)Latency.
(b)Radio-on

tim
e.

(c)G
oodput.

Figure
2.6:Perform

ance
in

an
all-to-allscenario

on
FlockLab

and
Indriya

fordifferentm
essage

sizes.

(a)Latency.
(b)Radio-on

tim
e.

(c)G
oodput.

Figure
2.7:Perform

ance
on

FlockLab
and

Indriya
fordifferentinitialm

essage
distributions.

2.5. Evaluation 35

too. On FlockLab,Mixer’s latency is 131–453 ms, a range enabling feedback control
in industrial automation [4]. Thanks to Mixer’s smart shutdown feature, radio-on
time (Figure 2.6b) follows the same linear trend. Both primitives reach their highest
goodput (Figure 2.6c) with 110 B messages on FlockLab: 18.5 kbps for S-Glossy and
53.7 kbps for Mixer.

2.5.1.2 Impact of Initial Message Distribution

Theoretical analysis shows that starting with a well-mixed distribution, where initially
all messages are equally spread over the network, can boost performance compared
to the case where all messages reside at the same node [60]. To evaluate this aspect,
we fix the message size (60 B) and the number of messages𝑀 (27 on FlockLab, 94 on
Indriya), and vary the fraction of the 𝑁 nodes that initially holds the𝑀 messages: 𝑁
(all-to-all), 𝑁 /2, 𝑁 /4, 𝑁 /8, and 1 (one-to-all). Messages are equally distributed across
the respective source nodes.

Results. Our results in Figure 2.7 confirm that Mixer benefits from a well-mixed
initial message distribution, while performance with S-Glossy is unaffected. The
effect becomes noticeable when messages are pooled at 𝑁 /4 or fewer nodes, yet the
performance loss is at most 22 % compared to the all-to-all case. We attribute this
behavior especially toMixer’s improved startup phase (Section 2.3.2.3), which ensures
fast-growing coding potential even in one-to-all scenarios.

2.5.1.3 Impact of Number of Messages (Generation Size)

In a final set of performance experiments, we investigate the impact of the number of
messages𝑀 to be exchanged in a round (generation size). We use again a message size
of 60 B and equally distribute 7, 21, 35, 49, and 63 messages to seven source nodes on
FlockLab.5

Results. Looking at Figure 2.8, we see that Mixer only has a performance advantage
over S-Glossy if there are at least a handful of messages to be exchanged. Otherwise,
the coding potential is too small and fine-tuned sequential Glossy floods perform
better. Nevertheless, Mixer’s performance advantage grows quickly with the number
of messages: Mixer is 2× faster and more efficient than S-Glossy for 21 messages, and
already 3× better for 63 messages.

Interestingly, we find in every all-to-all experiment that Mixer needs on average
about 3 ·𝑀 slots to deliver𝑀 messages despite vastly different payload sizes, network
diameters, and node densities on the two testbeds. This gives an idea of the constants
hidden by the𝑂-notation in the order-optimal scaling𝑂 (𝑀 +𝑇) of RLNC-based gossip
for ourMixer implementation. Indeed, for small generation sizes𝑀 , the number of
slots 𝑇 needed to disseminate one message dominates, whereas𝑀 dominates for large
generation sizes. 𝑇 is determined by the diameter of the network.

5Weonly show result from FlockLab because the number of active nodes on Indriya changed significant-
ly during our experiments so that the results would not be comparable to those in Figs. 2.6 and 2.7.

36 Chapter 2. Mixer: Efficient Many-to-All Broadcast

(a) Latency. (b) Radio-on time.

(c) Goodput.

Figure 2.8: Performance on FlockLab for different number of messages equally distributed
to seven source nodes.

2.5.2 Network Dynamics: Node Failures

In practice, nodes can suddenly drop out due to disconnection or failure. While the
absence of a node for several rounds is handled by a higher-layer protocol,Mixermust
cope with situations where nodes disappear shortly before or during a round.

To study this aspect, we run experiments on FlockLab in which we let a given number
of nodes simultaneously fail. We consider the failure of 1, 2, and 5 nodes and vary the
slot in which the failure occurs from 1 to 50. For each combination we perform at least
100 rounds. Nodes exchange 10 B messages in an all-to-all fashion, and non-failing
nodes log after each round how many of the 27 messages they can successfully decode.

Results. Figure 2.9 plots the probability that a non-failing node decodes all messages
against the slot in which the failure occurs. We see that a failure before or at the very
beginning of a round prevents the non-failing nodes from decoding all messages. This
is because the nodes fail before they can transmit for the first time. Thus, a failure in
later slots increases the probability that the non-failing nodes can decode all messages.
The increase shifts to the right with more failing nodes as nodes also need to transmit
linearly independent packets. Beyond a certain point (e.g., slot 20 for 1 failing node),
the probability to decode all messages is close to 100 %.

Note that, barring packet losses due to other reasons, a node for sure decodes all

2.5. Evaluation 37

Figure 2.9: Probability that nodes decode all messages against the slot in which a set of
nodes concurrently fails.

messages that initially resided at non-failing nodes. For instance, in our runs each
non-failing node always decodes at least 26, 25, and 22 messages for 1, 2, and 5 failing
nodes, respectively. We can therefore conclude thatMixer is highly robust to node
failures, providing guaranteed service to non-failing nodes while salvaging messages
of failing nodes with high probability.

2.5.3 Network Dynamics: Node Mobility

Emerging applications increasingly rely on nodes attached to mobile entities [86, 140].
We investigateMixer’s resilience against the resulting network dynamics in an outdoor
experiment.

Scenario. We deploy 14 battery-powered TelosB nodes on cardboard boxes in a 80 m
by 230 m area as illustrated in Figure 2.10. Another node is mounted on a car and
attached over USB to a laptop. Nodes transmit with 0 dBm on channel 26, usingMixer
to periodically exchange 15 28 B messages in an all-to-all fashion. The messages contain
performance counters and the IDs of all nodes from which the nodes have directly
received a packet during the previousMixer round (i.e., their 1-hop neighbors). We
set the slot length to 2 ms according to the guidelines in Section 2.4. Nodes initiate a
round every 500 ms, while the round length is 150 slots. At the end of each round, the
node on the car uses the remaining 200 ms to log the messages it received over USB
before the next round begins.

We first measure for 10 min with the car standing next to location A (see Figure 2.10).
Then we measure for 10 min while performing different maneuvers with the car. We
repeatedly pass locations A→B→C→D, then make a turn at location E, and repeatedly
pass locations D→C→B→A. We drive with a speed of 20–40 km/h while going in
circles, and hit 60 km/h between locations E and C. Such speeds are typical of state-of-
the-art mini and micro drones [31].

Results. Figure 2.11 shows the 1-hop neighbors of the node on the driving car over
time. We can see that the mobile node cannot directly communicate with all other
nodes: It has different sets of neighbors depending on its location. Indeed, we recognize

38 Chapter 2. Mixer: Efficient Many-to-All Broadcast

Figure 2.10: Setup of outdoor experiment with a mobile node mounted on a car that drives
at a speed of 20–60 km/h.

Figure 2.11: 1-hop neighbors of mobile node as the car drives rounds counterclockwise
(CCW) and clockwise (CW).

a recurring pattern that allows us to infer how often the car drove around the circle.
For example, before completing the fourth round counterclockwise (CCW), the car
drove up to location E, leaving the mobile node with only two neighors and increasing
the network diameter to at least three hops. Then, the car made a turn and continued
to drive the circle clockwise (CW) three more times.

Despite heavy network dynamics due to the high speed of movement, we measure the
same performance compared to when the car was standing. As visible from Table 2.2,
Mixer consistently provides high reliability >99.99 % and low latency ≤98.4 ms. For
shorter messages (e.g., a few bytes carrying GPS data), one could further reduce the
slot length to 1 ms. As a result, latency in this scenario would reduce to about 50 ms,
which is sufficient for drone swarm coordination requiring all-to-all communication
every 100 ms [30, 140]. In summary, the results show thatMixer is highly robust to
network dynamics and satisfies the demands of emerging applications.

2.5.4 Potential of Faster CPUs and Physical Layers

Mixer can benefit from a more powerful CPU: Using the same PHY, a faster CPU
allows Mixer to process packets at line rate for a wider range of payload sizes and
number of messages. For example, 2× faster processing shifts the crossover point

2.5. Evaluation 39

Table 2.2: Mixer’s performance with and without mobility.

Performance Metric With Mobility Without Mobility

Reliability [%] >99.99 >99.99
Latency [ms] 96.2 98.4

Figure 2.12: Speedup of ARM cores over TelosB in processing received packets for different
generation sizes.

in Figure 2.5 from 75 to 215 messages. Conversely, to fully exploit a faster PHY, the
processing speed should increase as well.

CPU cores. We perform microbenchmarks on the TelosB and three different 32-bit
ARM cores: Cortex-M0+ running at 32 MHz (labeled L0), Cortex-M4 running at 80 MHz
(L4), and Cortex-M4 running at 180 MHz (F4). Despite higher clock speeds, L4 and F4
offer extended instruction sets and richer hardware capabilities than the L0.

Processing speedup. To measure the processing speedup, we portMixer’s packet
processing routines to the ARM cores. We profile the time needed to process received
packets (building transmit packets involves similar operations, merely with lower
variance). To obtain real-world execution times for the same input on all cores, we run
tests on FlockLab with 60 B messages for different generation sizes (𝑀 = {7, 35, 63})
and trace the sequence of received packets at each node. We feed the collected traces
into the four cores to get a total of 40,000 execution time measurements per core.

The speedups, shown in Figure 2.12, are 7–10×, 28–40×, and 62–106× for the L0, L4,
and F4, respectively. The speedup depends on the generation size𝑀 , becauseMixer
processes payloads in batches and delayed from coding vectors. This optimization be-
comes more important with higher average batch size and thus with more messages𝑀 .
We use a highly optimized implementation of this approach on the TelosB, and expect
that similar ARM-specific code optimizations reduce the differences in speedups for
different𝑀 .

Projected benefits. We use (2.4) and (2.5) to project the impact of a faster CPU and/or
a faster PHY onMixer’s performance. Specifically, we multiply �̃�𝑎 with the speedup in
PHY bitrate and 𝑇𝑝 with the processing speedup over the TelosB. Using the speedups
from Figure 2.12, we assume that all processing activites in Mixer benefit as much as

40 Chapter 2. Mixer: Efficient Many-to-All Broadcast

Table 2.3: Projected latency of Mixer on FlockLab (all-to-all, 60 Bmessages) for different PHY
bitrates and CPU cores. Latencies in italics are CPU-bound (i.e., core is underdimensioned).

PHY Bitrate TelosB L0 L4 F4
[Mbps] [ms] [ms] [ms] [ms]
0.25 295.6 295.6 295.6 295.6
1 161.8 73.9 73.9 73.9
11 161.8 23.1 6.7 6.7
54 161.8 23.1 5.8 2.6

the processing of received packets. In this way, we can check, for example, whether a
CPU core is under-, over-, or well-dimensioned for a given PHY bitrate.

As an example, consider an all-to-all scenario with 60 B messages on FlockLab. We
know from Section 2.5.1 that Mixer needs about 95 slots with IEEE 802.15.4, and
studies suggest that capture (and henceMixer) works comparable or better with other
PHYs [118]. Table 2.3 lists projected average latency in milliseconds for 16 PHY/CPU
combinations, using the minimum speedups for each core from Figure 2.12. We see,
for example, that the L0 is sufficient to fully leverage a PHY bitrate of 1 Mbps used by
BLE, while the L4 or the F4 is needed to match 11 or 54 Mbps of IEEE 802.11 variants.
The latter combination (F4, 54 Mbps) would reduce latency by 100× compared to the
TelosB.

2.6 Discussion

Larger finite fields. Mixer currently uses GF(2), which keeps the coding vectors small
and allows for a straightforward and efficient implementation on standard hardware.
Instead, the network coding literature favors larger finite fields, such as GF(28) [51], to
increase the chances that a received packet is innovative. We studied the impact of
larger finite fields on Mixer’s performance in simulation and found that the gains are
smaller than onemay expect: Using GF(22) reduces the average number of slots by about
10 % compared with GF(2), but GF(23 . . . 28) does not provide further improvements.
We attribute this to the fact that the spreading of innovation in an area (as promoted
by larger finite fields) is upper-bounded by the influx of messages into that area. It is
also questionable whether the fewer slots with larger finite fields can indeed translate
into shorter latencies in practice as the computational load and the size of the coding
vectors would increase by several orders of magnitude.

Robustness to interference. Mixer achieves nearly perfect reliability in almost
all our experiments conducted under typical wireless interference in office buildings.
Nevertheless, it would be possible to borrow standard techniques such as frequency
hopping from other technologies (e.g., Bluetooth) to make Mixer even more robust to
interference. To this end, the slot number may serve as an index into a pseudo-random
sequence of channel frequencies that is known to all nodes. One may also increase the

2.7. Related Work 41

slot length 𝑇𝑠 to tolerate interference bursts (at the cost of higher latency), or adapt 𝑇𝑠
in a pseudo-random fashion to evade systematic jamming.

Setting the length of a round. Mixer provides a parameter that specifies the number
of slots constituting a round. Together with the slot length 𝑇𝑠 this parameter defines
the nominal length of a round and makes the running time of Mixer predictable, in
addition to the timeout mentioned in Section 2.3.3.1. However, one limitation of Mixer
is that the number of slots required until all nodes have reached full rank is difficult to
predict. While some applications allow for using a conservative estimate, this approach
may be problematic for applications with critical time constraints. Theoretical works
have looked at the worst-case number of slots for different network and communication
models [36, 51, 60, 129]. It would be worthwhile to adapt these models to Mixer (e.g.,
by incorporating existing capture models [83, 182]) to determine safe bounds on the
length of a round. Our experiments suggest that useful predictions are within reach:
We observe in all all-to-all runs that Mixer needs on average about 3 ·𝑀 slots despite
different network topologies and payload sizes.

2.7 Related Work

Theoretical foundations. Ahlswede et al. introduced network coding, showing that
it achieves the multicast capacity of wireline networks [3]. It was later found that these
bounds can be achieved using linear codes, and that encoding and decoding can be
done in polynomial time [84, 97]. This also holds if nodes pick random coefficients [70].
These works form the theoretical foundation of RLNC, which we combine inMixer
with the following technique.

Synchronous transmissions. Mixer exploits simultaneous transmissions from
multiple senders. SourceSync is the first system that demonstrates the benefits of
multiple senders transmitting the same packet in real IEEE 802.11 networks [143].
Glossy uses this concept for fast and reliable flooding in multi-hop IEEE 802.15.4
networks [48]. These protocols rely on accurate symbol-level synchronization to
benefit from sender diversity. In Mixer, instead, nodes transmit different packets,
which relaxes the required synchronization to the length of the preamble to possibly
receive one of the transmitted packets due to the capture effect [93, 94, 189]. The
capture effect has been used for collision resolution [181], network flooding [102],
aggregation [91], and agreement [5]. Instead, Mixer exploits the capture effect for
efficient many-to-all broadcasting of sizable messages.

Practical wireless network coding. Network coding has been extensively studied
in wireless and sensor networks; however, the vast majority of works focuses on
theoretical gains or evaluates new protocol designs only in simulation (see [134] for a
recent survey), thereby ignoring many practical issues that complicate or even prevent
a real implementation.

42 Chapter 2. Mixer: Efficient Many-to-All Broadcast

COPE [80] and MORE [29] are the first implementations of network coding for multiple
unicast flows and a single multicast flow in IEEE 802.11 networks. Pacifier [87] achieves
a higher multicast throughput than MORE. These works target stationary networks
and specific traffic patterns, which allows them to leverage long-lived network and
routing state for coding and packet forwarding. This, however, makes them unfit
for dynamic networks and concurrent multicast flows, both of whichMixer readily
supports. Moreover, they target PC-class devices with plenty of compute power,
memory, wireless bandwidth, and energy. Mixer can cope with stringent constraints
on any of these resources, allowing low-powerwireless systems to benefit from network
coding without putting restrictions on the traffic pattern.

Splash [41] and Pando [42] integrate pipelined flooding with XOR and fountain coding
for one-to-all data dissemination in IEEE 802.15.4 networks. While these solutions
run on resource-constrained devices, only the source encodes packets; all other nodes
forward the encoded packets and decode, which simplifies design and implementation.
They also assume stationary networks and support only a single source node. Instead,
Mixer supports dynamic networks, any number of sources, and efficiently performs
forwarding, en-/recoding, and decoding at every node in the network. As a result,
Mixer performs comparable or better to these specialized protocols, and yet supports
a much broader range of scenarios.

Many-to-all broadcasting. The unstructured spreading of messages in Mixer is
reminiscent of gossip [78]. Deb and Médard showed that combining gossip with RLNC
for the dissemination of multiple messages outperforms any non-coding approach (in
terms of needed slots) in a specific communication scenario [36]. More precisely, they
consider a random phone call model where the underlying network graph is complete.
Later works study variants of this approach theoretically [129] and in simulation [51],
primarily on static networks. However, the underlying network model does not fit
wireless mesh networks because a) the random phone call model implies that all links
work independently (i.e., there is no interference); b) it is assumed that a node is able to
receive multiple packets simultaneously or can perfectly avoid collisions. Further, the
results rely on assumptions regarding the initial message distribution and the field size
used for network coding. In particular, [36, 129] consider cases where the field size 𝑞
has been chosen such that 𝑞 ≥ 𝑀 while the simulations in [51] use GF(28). With packet
size constraints as in IEEE 802.15.4, such field sizes can lead to significant limitations
and performance degradation as discussed in Section 2.6.

Recently, it was shown that RLNC-based gossip achieves the optimal scaling𝑂 (𝑀 +𝑇)
also in dynamic networks for any initial message distribution and field size [60].
Furthermore, [60] provides results for a broadcast model that fits much better to the
inherent nature of wireless networks. However, the analysis is purely theoretical and
still assumes that nodes are able to receive multiple packets simultaneously. As for
dynamic wireless mesh networks,Mixer is the first design that translates the projected
benefits from theory into practice by combining RLNC with ST.

2.7. Related Work 43

Concurrently to our work, Mohammad and Chan [127] proposed Codecast, combining
LT codes [103] with ST. LT codes can be interpreted as a special variant of RLNC.
However, they lack the recoding capabilities of generic RLNC: In Codecast, a node
is not able to recode arbitrary payloads, it can only (re-)encode previously decoded
messages. Thus, the coding potential at the nodes grows slower than it does with
Mixer, eventually leading to longer rounds. Indeed, the results in [127] suggest that
Mixer outperforms Codecast by up to 3× on FlockLab. Further, the design of Codecast
suffers from severe scalability issues for more than𝑀 = 30 messages.

44 Chapter 2. Mixer: Efficient Many-to-All Broadcast

Postscript

WithMixer, we have contributed an efficient, scalable, and reliable many-to-all commu-
nication primitive for wireless mesh networks. Moreover, Mixer’s versatility supports
the full spectrum from one-to-all to all-to-all communication and from static to dy-
namic networks, including fast mobile agents. Compared to prior practical many-to-all
protocols that rely onmessage routing or flooding,Mixer exploits the synergy of RLNC
and ST to disseminate all messages simultaneously. Our implementation of Mixer is
up to 3.8× faster and more efficient than the state of the art while providing nearly
100 % reliability. Thus, Mixer empowers emerging wireless CPS, as we demonstrate in
Chapter 6, and enables applications that have seemed out of reach.

3
Butler: Increasing the Availability of

Low-Power Wireless Communication Protocols

Preface

Dependability is undoubtedly one of the most important requirements of CPS appli-
cations, especially in medical and industrial scenarios. Our communication protocol
Mixer, presented in the previous chapter, already provides a very reliable communica-
tion service. However,Mixer and all other ST-based communication protocols contain
a single point of failure that fundamentally impairs the availability of the communica-
tion service in the presence of node crashes and network partitions. The problem is
that these protocols require tight time synchronization and use one dedicated node for
this task. Distributing this task across multiple nodes comes with various challenges.

This chapter addresses this problem and proposes Butler, a lightweight and dis-
tributed time synchronization mechanism. Butler synchronizes all nodes in the
network, regardless of node failures, so any set of nodes can start the communica-
tion process, effectively eliminating the single point of failure. In addition, we also
formally prove Butler’s correct synchronization behavior. The experimental evalua-
tion shows that Butler can reliably synchronize the network to within ±3 µs despite
unpredictable node failures and network partitions. Experiments with Mixer and
Butler demonstrate a truly fault-tolerant communication service. Moreover, Butler
has no noticeable impact on the overall communication performance, and its temporal
overhead ranges well below 1 %. Thus, the efficiency and effectiveness of Butler can
significantly improve the availability of existing ST-based protocols to meet the strict
dependability requirements of CPS applications.

46 Chapter 3. Butler: Highly Available Low-Power Wireless Protocols

3.1 Introduction

In recent years, wireless sensor networks (WSNs) have become an integral part of
CPS and the Industrial Internet of Things with applications ranging from personalized
medicine through infrastructure control to smart factories. WSNs offer unprecedented
flexibility and cost efficiency in terms of installation, operation, and maintenance
compared to wired communication systems [17, 88, 147]. However, as defined by the
International Society of Automation, the dependability of the wireless communica-
tion service is essential in these critical application domains, where small disruptions
can cause system outages involving huge financial losses or even catastrophic conse-
quences [190].

In parallel to advances in hardware enabling more capable yet ultra-low-power micro-
controllers, communication protocols have also evolved. With Glossy [48], ST became
popular, and many different ST-based protocols emerged in the following years that
greatly outperform the traditional link-based protocols [196]. For example, in the
EWSN Dependability Competition [157], which attracted participants from industry
and academia, teams with ST-based protocols consistently placed in the top three
ranks. These new protocols can satisfy higher application requirements and make
WSNs suitable even for demanding closed-loop control applications (e.g., [172], and
our work later in Chapter 4). One of the key advantages of many ST-based protocols
is their topology-independent protocol logic, which provides unprecedented resilience
and flexibility as required, for example, in highly dynamic application scenarios with
mobile robots [17] or drone swarms [61].

Problem. From an application’s perspective, a dependable communication service
should transport messages reliably across the network and be available when needed to
ensure efficient and timely message delivery. State-of-the-art ST-based protocols [196]
provide a highly reliable and efficient message transport. Furthermore, protocols like
Virtus [50] and Wireless Paxos [137] provide mechanisms (virtual synchrony and
consensus) to build higher-layer fault-tolerant systems.

Despite these achievements, these protocols are themselves not fault-tolerant: already
the failure of a single node can lead to the unavailability of the communication service
in the entire network. The fundamental problem is that ST-based protocols require
tight time synchronization, which is achieved by selecting a particular node, often
named initiator (see, e.g., [48, 91], and our Mixer protocol in Chapter 2), that provides
a time reference. Typical faults in WSN deployments (e.g., due to software/hardware
failures, fabrication problems, environmental factors, adversarial attacks, and battery
depletion [77]) can cause the initiator and hence the communication service to fail.
Moreover, the single initiator is also a problem when the network splits into different
partitions, for example, because the node connectivity is affected by environmental
factors such as obstacles or interference and by moving nodes (e.g., a swarm of drones
splitting up in flight). In these situations, the single initiator is only part of one partition,
and the nodes in all other partitions are no longer able to exchange any messages.

3.1. Introduction 47

Contribution. To solve the availability problem, we present the design, theoretical
analysis, and experimental validation of Butler, a lightweight and distributed synchro-
nization mechanism. Butler enables ST-based protocols to distribute the role of the
initiator across multiple nodes (randomly selected at run-time) so that all non-faulty
nodes that are physically able to communicate can do so at the required time. To
achieve this, Butler uses a fully distributed and highly efficient mechanism where
nodes probabilistically propose and distribute reference times using short messages
that feature a natural order. This order allows nodes to quickly converge toward
the same accurate reference time despite possible node failures, message losses, and
network partitions. Afterward, communication can be initiated in a dependable way by
multiple synchronized initiators, which is key to leveraging the efficiency and reliability
of ST.

After describing the design of Butler in Section 3.3, we formally analyze and prove
its correctness in Section 3.4. Section 3.5 presents an open-source implementation of
Butler on the popular nRF52840 platform, which we use in Section 3.6 to evaluate
performance and efficiency on the FlockLab testbed [173]. Our results demonstrate
that Butler reliably synchronizes all nodes in the network to within ±3 µs despite
large initial time offsets and unpredictable node failures. Butler achieves this while
incurring only a minimal temporal overhead that ranges below 1 % in realistic scenarios.
Moreover, experiments with our ST-based communication protocol Mixer (Chapter 2)
show that the communication performance in terms of latency and reliability signifi-
cantly decreases when using multiple initiators. When instead extending the standard
Mixer protocol with Butler to synchronize the initiators, our results indicate no
performance degradation: latency and reliability are at least as good as for the original
Mixer with a single initiator while providing superior availability.

In summary, this work contributes the following:

• The design of Butler, a lightweight and distributed synchronization mechanism
that pushes the availability of ST-based protocols to previously unseen heights.

• A rigorous theoretical analysis of Butler, including a formal proof of Butler’s
correctness.

• Real-world experiments that validate the theoretical analysis by demonstrating
outstanding synchronization accuracy at minimal temporal overhead despite
node failures.

• A case study demonstrating that Butler increases the availability of a state-
of-the-art ST-based protocol without sacrificing overall communication perfor-
mance.

48 Chapter 3. Butler: Highly Available Low-Power Wireless Protocols

3.2 Motivation and Background

Providing high availability inWSNs is an important yet unsolved research problem. The
problem originates from the dependability requirements of emerging CPS applications.
We discuss these requirements next, then review previous approaches toward providing
dependability in WSNs, and, finally, state the problem. Section 3.7 discusses existing
work that is most closely related to our specific contributions.

Application requirements and fault model. WSNs offer high flexibility and cost
efficiency, making them a key building block formany current and future CPS, including
mission- and safety-critical applications [17]. In addition to high performance demands,
these applications require a dependable communication service that enables reliable
data exchange and is available when needed despite certain failures [190].

We define a communication service to be available if messages can be exchanged at the
required time (i.e., as requested by the application or a high-layer protocol) between
all nodes in the network that are physically able to communicate with each other (i.e.,
when the signal-to-interference-plus-noise ratio between these nodes is high enough
to permit information transfer). Providing availability thus requires robustness and
fault tolerance such that failures of individual nodes do not affect the availability of
the communication service between the non-faulty nodes.

WSNs are deployed at scale and consist of many low-cost, resource-constrained em-
bedded devices that can fail for various reasons [45]. For example, because of software
and hardware faults or depleted batteries, nodes may suddenly stop working (i.e.,
fail-stop). Nodes may also recover from a failure and resume operation (i.e., crash
recovery). In addition, the environment of the deployment also has a significant impact
on the network. Due to obstacles, external interference, and node movement, the
communication links are constantly changing, which leads to time-varying message
losses and may split the network into several isolated partitions. While we consider
all aforementioned types of failures (i.e., node crashes, message losses, and network
partitions), we do not consider Byzantine (i.e., erratic or malicious) faults. That is, we
assume that a node works according to its specification whenever it is operational, and
modifications to messages during transmission can be reliably detected (e.g., using
error detection codes such as a cyclic redundancy check (CRC)).

Dependability in wireless sensor networks. Early WSN protocols adopted link-
oriented and routing-based communication techniques [56] to meet the requirements
of uncritical applications (e.g., environmental monitoring [168]). Yet, already in 2003,
Stankovic et al. noted the importance of real-time and dependability guarantees
in WSNs to meet the requirements of more demanding applications, such as those
involving control [164].

Motivated by the growing importance of such CPS applications, recent WSN protocols
based on ST have been shown to provide real-time guarantees [195] and certain
dependability properties. For example, Virtus [50] provides atomic multicast and view

3.3. Design 49

management, while𝐴2 [5] andWireless Paxos [137] provide distributed agreement and
consensus. These dependability properties are fundamental to building fault-tolerant
systems through redundancy and replication [156]. Providing these properties has
been possible since ST allow the protocol logic to abstract away the complexity and
dynamics of wireless networks. For instance, the temporary or long-term failure of
individual wireless links can be smoothly handled by the spatio-temporal diversity of
the ST technique [196].

Problem statement. However, ST-based protocols cannot deal with the failure of
critical nodes, such as the node that initiates the communication process. Wireless
Paxos, Virtus, 𝐴2, Mixer, and many other ST-based protocols (e.g., [48, 91]) rely on
one dedicated initiator that starts a packet exchange by transmitting first. This single
initiator is a serious threat to the protocols’ availability: a failure of this node prevents
any communication in the network as all other nodes will keep waiting for an incoming
transmission event that never occurs.

The reason for the single initiator is the need for an accurate time reference. ST require
tight synchronization across nodes which must minimally satisfy the constraints set by
the capture effect (e.g., 160 µs for IEEE 802.15.4) known as capture window [91]. If the
time offsets of nodes exceed the capture window, communication becomes inefficient
and unreliable.

To solve the availability problem, an ST-based protocol should ideally use a large set
of multiple initiators, randomly and independently selected at run-time before every
individual packet exchange. The problem, however, is that the nodes, and therefore the
set of potential initiators for the next packet exchange, quickly get out of sync due to
the inevitable clock drift between nodes. For example, the IEEE 802.15.4 standard [71]
requires a clock drift of at most ±40 ppm, which means that in the worst case, two
initially perfectly synchronized nodes violate the capture window already after 2 s.

Based on these requirements, a scheme is needed that synchronizes the nodes to
within the size of the capture window. Moreover, an effective synchronization mech-
anism must itself be fault-tolerant under the above-mentioned fault model, and be
lightweight (i.e., low overhead) to avoid negatively affecting the overall communication
performance.

3.3 Design

We introduce Butler, a synchronization mechanism that solves the problem outlined
above to boost availability. Before presenting the details of Butler’s design, we provide
a high-level overview and state the scope of our work.

3.3.1 Butler Overview

Butler is a lightweight and distributed synchronization mechanism that is designed to
directly integrate with existing communication protocols. It does not require periodic

50 Chapter 3. Butler: Highly Available Low-Power Wireless Protocols

tim
e

Butler
Com

m
unication

Butler
Com

m
unication

Butler
Com

m
unication

sleep
sleep

𝑛
1

𝑛
2

𝑛
3

𝑛
4

13,𝑛
1

12,𝑛
1

11,𝑛
1

5,𝑛
4

4,𝑛
4

1,𝑛
4

13,𝑛
1
12,𝑛

1
11,𝑛

1
5,𝑛

4
4,𝑛

4
1,𝑛

4

12,𝑛
1
11,𝑛

1
6,𝑛

4
5,𝑛

4
4,𝑛

4
1,𝑛

4

14,𝑛
4

11,𝑛
1

6,𝑛
4

5,𝑛
4

TXListen
RX

no
sync

RX
and

sync

Δ
𝑡ofs

𝜏
𝑇
slot

𝑡grid

Figure
3.1:Butler

isexecuted
rightbefore

scheduled
com

m
unication

to
synchronize

the
netw

ork.Thisrem
ovesthe

need
for

a
single

initiatorin
ST-based

com
m
unication

protocols,w
hich

increases
theiravailability.The

exam
ple

show
s
how

4
nodes

(𝑛
1 -
𝑛

4)w
ith

a
m
axim

um
initialoffsetof

Δ
𝑡ofs synchronize

theirlocalslotgrids.The
contentsofthe

sync
m
essages(𝑇

𝜏
and

𝜎)
are

show
n
inside

the
slots,w

hereas
𝑇
𝜏
isexpressed

in
term

softhe
rem

aining
num

berofslotsuntilButler
term

inates.Initially,
𝑛

1 -
𝑛

3 synchronize
on

the
proposed

reference
tim

e
of
𝑛

1 ,butre-synchronize
upon

reception
ofthe

earlierreference
tim

e
from

𝑛
4 .

3.3. Design 51

activity and is executed right before a scheduled communication round, as illustrated
in the upper part of Figure 3.1. Butler reliably establishes a common reference time 𝜏
among nodes despite node failures, message losses, and network partitions such that
multiple initiators can start the communication protocol at the same time.

Because of clock drift, the nodes are initially unsynchronized and start Butler with
different time offsets 𝑡ofs, as shown in the lower part of Figure 3.1. We assume a
maximum initial offset Δ𝑡ofs between the nodes, which can be calculated based on
the current communication period and the known maximum clock drift. During the
execution of Butler, the nodes probabilistically exchange sync messages. Each sync
message is associated with a certain reference time. Using Butler, the nodes always
synchronize to the earliest (minimum) reference time and propagate this reference
time further in the network. Eventually, all nodes have the same reference time, which
marks the end of Butler.

Scope. Butler is just one important piece of the puzzle to achieve high availability
of the overall system. Specifically, Butler is meant to improve the availability of ST-
based communication protocols that are responsible for the message exchange among
nodes (Mixer (Chapter 2), Chaos [91], and others [196]). These protocols, sometimes
also referred to as communication primitives, can benefit from Butler if they are in
principle able to support multiple initiators—any protocol that does not fulfill this
requirement cannot provide availability! The necessity for multiple initiators rules out
protocols that can only realize a one-to-all message exchange in each execution (e.g.,
Glossy [48]) since there can only be one specific source node by design. Moreover, all
protocols that build upon such protocols, for example, the LWB [49] or Crystal [73], are
therefore inherently limited and cannot be made available with Butler. Higher-layer
WSN protocols that also perform network management tasks at one dedicated node
(e.g., scheduling) require additional mechanisms to provide availability by avoiding
this single point of failure.

3.3.2 Butler in Detail

In the following, we will explain the structure and operation of Butler. Additionally,
we will discuss certain design decisions and their impact.

Slot grid and sync message. In Butler, each node follows a local slot grid, as shown
in Figure 3.1, which is defined by the grid reference 𝑡grid and the slot length𝑇slot . While
𝑇slot is fixed and known to all nodes, each node uses 𝑡ofs, the time at which it started
Butler, as their initial 𝑡grid . During the execution, nodes exchange sync messages
to align their local slot grids and determine a common 𝜏 . Because the nodes align
transmissions to their local slot grid, the receiving nodes will know the grid reference
𝑡grid of the sender based on the receive timestamp. Each sync message is associated
with a certain 𝜏 and contains two pieces of information: The duration 𝑇𝜏 , which is the
time from 𝑡grid until 𝜏 , and origin 𝜎 , the ID of the node that sent the particular 𝜏 for
the first time. Note that sync messages with the same 𝜎 always describe the same 𝜏 .

52 Chapter 3. Butler: Highly Available Low-Power Wireless Protocols

Algorithm 2 Butler (core algorithm)
1: procedure butler_start ()
2: 𝑇𝜏 ← slots ∗𝑇slot ⊲ Remaining duration
3: 𝑡grid ← 𝑡ofs ⊲ Slot grid reference
4: 𝜏 ← 𝑡grid +𝑇𝜏 ⊲ Reference time
5: 𝜎, tx ← 0

6: while 𝑇𝜏 > 0 do ⊲ Each loop iteration corresponds to one local slot
7: if tx or (𝑃TX > random()) then ⊲ Make transmit decision
8: if 𝜎 = 0 then

9: 𝜎 ← 𝑛𝑖
10: transmit(𝑇𝜏 −𝑇slot , 𝜎) ⊲ Transmission starts at 𝑡grid +𝑇slot
11: tx ← 0
12: else

13: if receive() ≠ 0 then

14: 𝜏 = 𝑡grid +𝑇 𝜏 ⊲ Received reference time
15: if (𝜎 = 0) or (𝜏 < 𝜏) then
16: sync ()
17: else if (𝜏 = 𝜏) and (�̂� < 𝜎) then
18: sync ()
19: 𝑡grid ← 𝑡grid +𝑇slot
20: 𝑇𝜏 ← 𝑇𝜏 −𝑇slot

21: procedure sync ()
22: 𝜎, 𝑇𝜏 , 𝑡grid, 𝜏 ← �̂�, 𝑇 𝜏 , 𝑡grid, 𝜏

23: tx ← 1 ⊲ Relay new 𝜏 in the next slot

We use the size of a sync message to determine 𝑇slot , because we want transmissions
with the same 𝜎 to either overlap completely or not at all.

Operation. We explain Butler’s operation based on the example in Figure 3.1 and
directly refer to the relevant lines in Algorithm 2. At the beginning, the nodes initialize
the remaining Butler duration 𝑇𝜏 (i.e., the time until 𝜏) as a multiple of 𝑇slot (line 2).
The grid reference 𝑡grid and 𝑇𝜏 are used to determine the initial 𝜏 (line 4). Furthermore,
all nodes start unsynchronized and set 𝜎 to 0 (line 5). Butler’s main loop (line 6) is
executed once per slot, at the end of which 𝑡grid and 𝑇𝜏 are updated accordingly (lines
19-20). At 𝑇𝜏 = 0, 𝜏 is reached and Butler terminates. In each slot, the nodes decide
independently whether to transmit a sync message or listen. We start with the transmit
decision and explain reception afterward.

The transmit decision is made with probability 𝑃TX (line 7). If 𝜎 = 0, the node is still
unsynchronized and will propose its own 𝜏 to the network, setting 𝜎 to its node ID
(lines 8-9). The node then aligns the start of the transmission to the next slot (𝑡grid +𝑇slot)
and sets the duration in the sync message to 𝑇𝜏 −𝑇slot (line 10). This is the case for the
first transmission of 𝑛1 and 𝑛4 in Figure 3.1.

3.4. Analysis 53

In case a node decides not to transmit, it will listen for an incoming sync message.
After a successful reception (line 13), the node computes the reference time 𝜏 associated
with the sync message (line 14). If 𝜎 = 0 or the received 𝜏 is earlier than 𝜏 , the node
synchronizes to 𝜏 (lines 15-16). The rationale behind this is that the earliest reference
time had the most time to propagate through the network and therefore is expected
to reach the most nodes compared to other reference times. In Figure 3.1, 𝑛2 and
𝑛3 synchronize to their first reception (RX and sync) because of 𝜎 = 0 and later re-
synchronize due to 𝜏 < 𝜏 . Synchronizing to a new reference time involves updating the
local information with the information from the sync message and adjusting the local
slot grid (line 22). To quickly spread the new 𝜏 , the node will always transmit in the
next slot (line 23). In contrast, 𝑛4 discards the first reception (RX no sync) because it is
synchronized to an earlier reference time, hence the local slot grid remains unchanged
as can be seen in Figure 3.1. In the unlikely case that both 𝜏 and 𝜏 are equal, the node
synchronizes to the reference time of the sync message with the lower 𝜎 (lines 17-18).

Using Algorithm 2, Butler aligns the local slot grids of initially unsynchronized nodes
to within 𝑇cap, so that multiple nodes can reliably initiate the communication process
at the same time in the subsequent communication round.

3.4 Analysis

After describing the design of Butler, we now theoretically analyze its synchronization
behavior.

System model. We consider a system consisting of a set N = {𝑛1, 𝑛2, . . . , 𝑛𝑁 } of
𝑁 embedded devices (nodes). Each node 𝑛𝑖 has a local clock that runs at a specific
clock speed a𝑖 , which may vary from node to node due to imperfect clock sources (e.g.,
a crystal oscillator). The nodes have unique IDs and are equipped with half-duplex
RF transceivers to transmit and receive messages wirelessly. Communication over
the shared wireless medium is unreliable, and the probability of successful packet
reception is always below 1. Moreover, we assume that nodes do not have access to
external synchronization sources such as GPS and must exclusively synchronize via
communication. In general, multi-hop communication is needed to reach all nodes
in the network because of the limited communication range. Due to environmental
factors (e.g., interference), node faults, or node mobility, the network can split into
partitions. We define a network partition as a subset of N where all nodes in the same
partition can bidirectionally exchange information with each other over one or more
hops.

3.4.1 Correctness of Butler

The goal of Butler is to achieve synchronicity among the nodes in the network such
that multiple nodes can safely initiate the upcoming communication round (i.e., within
the capture window 𝑇cap). Therefore, Butler is correct if the maximum difference Δ𝜏

54 Chapter 3. Butler: Highly Available Low-Power Wireless Protocols

Table
3.1:State

transition
m
atrix

fornode
𝑛
𝑖 in

a
netw

ork
w
ith

𝑁
nodes.Reference

tim
esrepresentthe

different
statesand

are
ordered

from
the

latest(𝜏1)to
the

earliest(𝜏
𝑁
).Each

entry
describesthe

transition
probability

from
one

state
to

another.The
triangularform

resultsfrom
Butler’sbehaviorto

synchronize
only

to
earlierreference

tim
es.

T
o

F
r
o
m

𝑢
𝜏1

𝜏2
...

𝜏
𝑖

...
𝜏
𝑁
−

1
𝜏
𝑁

𝑢
𝑃
RX (∅)

𝑃
RX (𝜏1)

𝑃
RX (𝜏2)

...
𝑃
TX

...
𝑃
RX (𝜏

𝑁
−

1)
𝑃
RX (𝜏

𝑁)
𝜏1

0
𝑃
RX (∅)+

𝑃
TX

𝑃
RX (𝜏2)

...
0

...
𝑃
RX (𝜏

𝑁
−

1)
𝑃
RX (𝜏

𝑁)
𝜏2

0
0

𝑃
RX (∅)+

𝑃
TX

...
0

...
𝑃
RX (𝜏

𝑁
−

1)
𝑃
RX (𝜏

𝑁)
...

0
0

0
...

0
...

𝑃
RX (𝜏

𝑁
−

1)
𝑃
RX (𝜏

𝑁)
𝜏
𝑖

0
0

0
0

𝑃
RX (∅)+

𝑃
TX

...
𝑃
RX (𝜏

𝑁
−

1)
𝑃
RX (𝜏

𝑁)
...

0
0

0
0

0
...

𝑃
RX (𝜏

𝑁
−

1)
𝑃
RX (𝜏

𝑁)
𝜏
𝑁
−

1
0

0
0

0
0

0
𝑃
RX (∅)+

𝑃
TX

𝑃
RX (𝜏

𝑁)
𝜏
𝑁

0
0

0
0

0
0

0
1

3.4. Analysis 55

between the reference times of all nodes in the same network partition does not exceed
𝑇cap.

3.4.1.1 Equal Clock Speeds

We begin with the simpler case, assuming all clocks run at the same speed, and prove
the correctness of Butler for nodes in the same network partition.

Lemma 1. If all clock speeds are equal, then there is a unique total order of all reference
times over the entire execution of Butler.

Proof. Reference times in Butler have a natural temporal order. If two reference times
are equal, we select the reference time with the lower 𝜎 as the earlier one. However,
nodes in Butler do not have a shared time base, so a sync message describes the
reference time relative to its transmission time (𝜏 = 𝑡grid +𝑇𝜏). This relative duration
is affected by the clock speed of the transmitting node, which would not be the case
with absolute timestamps and a shared time base. Leveraging the assumption that all
nodes have the same clock speed, the order of the reference times will be the same at
any point during the execution of Butler. □

Theorem 1. If all clock speeds are equal, Butler is correct.

Proof. In Butler, the current reference time 𝜏 and its origin 𝜎 essentially describe the
state 𝜏𝜎 of a node. Based on Lemma 1 and without loss of generality, we assume the
following (arbitrary) order among reference times 𝜏1 > 𝜏2 > ... > 𝜏𝑁 , such that 𝜏𝑁 is
the earliest. We can then create a corresponding state transition matrix for a node
𝑛𝑖 , shown in Table 3.1, with the different states represented by the reference times.
All nodes start in the unsynchronized state 𝑢, with 𝑢 > 𝜏 𝑗 for 1 ≤ 𝑗 ≤ 𝑁 . The table
entries describe the transition probabilities, for example, 𝑛𝑖 transitions from 𝑢 to 𝜏2

with 𝑃RX (𝜏2), the probability of receiving 𝜏2 from any other node. These transition
probabilities are highly dependent on the situation and continuously change based on
factors such as network topology, environment, node behavior, as well as the state of
its neighboring nodes. In Butler, nodes propose their own reference time only if they
are in state 𝑢, that is, they have not received any other reference time. Consequently,
other nodes can reach 𝜏𝑖 only if 𝑛𝑖 proposes it in the first place. Nodes remain in their
current state if they either transmit (𝑃TX) or receive nothing (𝑃RX (∅)), which includes
receiving later reference times that are ignored.

In a network partition, all nodes can communicate with each other either directly
or over multiple hops. Since the nodes decide randomly and independently if they
transmit or listen, all transitions probabilities 𝑃RX (𝜏 𝑗) for proposed reference times 𝜏 𝑗
in Table 3.1 are greater than 0. Butler ensures that transitions are only allowed toward
earlier reference times, leading to the triangular form of the state transition matrix.
Therefore, all nodes synchronize to the same reference time with high probability.

56 Chapter 3. Butler: Highly Available Low-Power Wireless Protocols

Local time

Global time

𝑛𝑖
𝑛 𝑗

𝑇𝐵

0
𝑡0 𝑡1 𝑡2

𝑇cap

Figure 3.2: Local time vs. global time of nodes 𝑛𝑖 and 𝑛 𝑗 with Δa relative to each other. The
nodes are synchronized to different reference times. Three scenarios with different initial
offsets for 𝑛 𝑗 are shown. Although the order of reference times can change during execution,

Butler is still correct.

Because we assume that all clock speeds are equal, it follows that the pairwise difference
between the reference times of all nodes is Δ𝜏 = 0 < 𝑇cap, which proves correctness. □

3.4.1.2 Varying Clock Speeds

In the real world, the clock speeds of the nodes are imperfect and may vary within
a certain range, specified by the frequency tolerance and stability properties of the
clock source (e.g., a crystal oscillator). We can determine Δa , which is the maximum
clock speed difference between two nodes based on the hardware specifications. For
example, the IEEE 802.15.4 standard [71] requires Δa = 80 ppm (±40 ppm). We now
extend the correctness proof for varying clock speeds by incorporating Δa .

Lemma 2. Correctness of Butler can only be ensured if the maximal execution duration
𝑇𝐵 ≤ 𝑇cap/Δa .

Proof. We consider two nodes with Δa relative to each other. Assuming that both nodes
synchronize simultaneously to the same reference time, they are perfectly time-aligned
at this point (Δ𝜏 = 0). As time progresses, the local times of both nodes drift away
from each other due to Δa , and it takes 𝑇cap/Δa time to have a difference of Δ𝜏 = 𝑇cap
between them. If Butler progresses further, correctness is violated, although both
nodes are synchronized to the same reference time. Therefore, with varying clock
speeds, it is necessary to limit the duration of Butler’s execution to𝑇𝐵 = 𝑇cap/Δa . □

Theorem 2. Butler is correct as long as 𝑇𝐵 ≤ 𝑇cap/Δa .

Proof. With varying clock speeds, the order of the reference times can change during
the execution of Butler. We will now prove Butler’s correctness by analyzing the
different situations that can occur with two reference times proposed by nodes 𝑛𝑖
and 𝑛 𝑗 . Figure 3.2 shows how the local times of 𝑛𝑖 and 𝑛 𝑗 progress compared to the
global time. We assume that both nodes have Δa relative to each other, with 𝑛𝑖 having
the lowest and 𝑛 𝑗 having the highest clock speed. The nodes execute Butler for a
duration of 𝑇𝐵 according to the local time (y-axis), leading to different execution times

3.4. Analysis 57

concerning global time (x-axis). To visualize the different possible situations, we depict
three scenarios for 𝑛 𝑗 , each with a different initial offset (𝑡0, 𝑡1, and 𝑡2) for the start of
Butler, while 𝑛𝑖 always starts at 𝑡0.

If 𝑛 𝑗 starts Butler before 𝑡0, 𝜏 𝑗 will be earlier than 𝜏𝑖 for the entire Butler execution.
Similarly, if 𝑛 𝑗 starts Butler after 𝑡2, 𝜏𝑖 will always be earlier than 𝜏 𝑗 . In these cases,
all nodes eventually synchronize to the same reference time, and because of Lemma 2,
Δ𝜏 will not exceed 𝑇cap.

We now look at the case when 𝑛 𝑗 starts Butler between 𝑡0 and 𝑡2, for example at 𝑡1.
Since 𝑛𝑖 starts Butler before 𝑛 𝑗 , 𝜏𝑖 is earlier than 𝜏 𝑗 , and nodes would synchronize to
𝜏𝑖 upon reception. However, during the execution, the local time of 𝑛 𝑗 “overtakes” 𝑛𝑖
(intersection), and the order of the reference times changes, that is, 𝜏𝑖 > 𝜏 𝑗 . Depending
on the initial offset of 𝑛 𝑗 , this can happen at any time during the execution, leading
to nodes possibly being synchronized to different reference times when Butler ter-
minates. Nevertheless, because of Lemma 2, the difference Δ𝜏 between the reference
times is less than or equal to 𝑇cap.

As a result, either there is a unique reference time, or all chosen reference times differ
by at most 𝑇cap, implying Butler’s correctness. □

3.4.2 Network Partitions

Butler is a distributed synchronization mechanism with probabilistic transmit behav-
ior that seamlessly supports network partitions. We assume that the network partitions
can arbitrarily change between executions of Butler but that they remain stable while
synchronization is ongoing, except that nodes can leave or fail at any point in time.
This assumption is necessary to prevent a node with the earliest reference time from
joining a new partition at the end of Butler, leaving no time for the other nodes in the
partition to resynchronize. However, this is usually not a problem since the execution
of Butler only takes a few tens of milliseconds (see Section 3.6.3).

With symmetrical communication links, and based on our definition of a network
partition, all nodes that can communicate with each other must be in the same partition.
Then, the presented proofs apply directly to each network partition. The state transition
matrix in Table 3.1 would contain disjoint sets of states with one set per partition, and
the transition probabilities between states of different sets would be 0 as no messages
can be exchanged.

However, with asymmetrical links, nodes from one partition could receive a reference
time 𝜏𝑖 from another node that is not in the same partition. If 𝜏𝑖 is earlier than all
other reference times in the partition, all nodes will eventually synchronize to 𝜏𝑖 .
Otherwise, if there exists an earlier reference time in the partition, then 𝜏𝑖 will be
ignored. Therefore, the correctness of Butler is not affected by network partitions
because it is irrelevant whether the node that proposed the reference time is part of
the same partition.

58 Chapter 3. Butler: Highly Available Low-Power Wireless Protocols

3.4.3 Discussion

Limited time to converge. Our analysis shows an interesting area of tension between
the theoretical proof of Butler’s correctness and the practical challenge that the
duration of Butler’s execution is limited due to imperfect clocks (Δa ≠ 0). Whether
the maximum duration 𝑇𝐵 of Butler (see Lemma 2) is sufficient for the nodes to
converge on a single reference time depends on the network topology and environment,
the node behavior, and the tolerance and stability of the clock source. In general, a
network can have arbitrarily weak communication links so that the time to converge
cannot be bounded. However, as we show in the evaluation in Section 3.6, these
problems may be of low relevance in practice as the time to converge is several orders
of magnitude lower than𝑇𝐵 . Among others, one reason is that the number of proposed
reference times during the execution of Butler is low (as discussed in Section 3.5)
compared to the overall number of nodes 𝑁 , as most of the nodes will never propose
their own reference time. Thus, the matrix in Table 3.1 will typically be sparse, which
reduces the convergence time.

Impact of interference. During the execution of Butler, the nodes will receive a
reference time several times due to the random transmit behavior; thus, missing some
messages, for example, due to interference, can usually be compensated. In general,
stronger interference leads to more message loss and increases the average time to
converge but does not violate the correctness of Butler, which is independent of
the receive probability. Note that a receive probability of 0 means the node is not
connected. In practice, stronger interference can be proactively accounted for by
deliberately extending the duration of Butler.

3.5 Implementation

We have implemented Butler on the popular Nordic nRF52840 platform using the
IEEE 802.15.4 PHY [71]. The code is published as open source at https://gitlab.
com/nes-lab/butler.

Usage of Butler. It is straightforward to combine Butler with an existing ST-
based communication protocol. Butler’s API is a single function butler_ start(id),
which takes the ID of the node as an argument. During the execution, Butler takes
care of correctly handling all interrupts and should not be interfered with from the
outside. Upon termination, the function returns the final reference time and origin
shortly after reaching it. At this point, the nodes are synchronized and can start the
next communication round. Butler does not require periodic or repeated execution
and is scheduled on demand, provided the maximum initial offset Δ𝑡ofs based on the
communication period is known.

Sync message. Figure 3.3 shows the structure of a sync message for the IEEE 802.15.4
PHY. The synchronization header (SHR) is responsible for the capture window 𝑇cap

and contains the preamble and the SFD. SHR and the length field (len) are mandatory

https://gitlab.com/nes-lab/butler
https://gitlab.com/nes-lab/butler

3.5. Implementation 59

SHR len 𝑇𝜏 𝜎 CRC

5 B

𝑇cap = 160 µs

1 B ≥ 1 B

Butler payload

2 B

Figure 3.3: Packet structure of a sync message in Butler using the IEEE 802.15.4 PHY.

parts of the communication standard. Butler adds the remaining duration 𝑇𝜏 and
the origin 𝜎 as payload, whose space requirements are known at compile-time but
vary depending on the application and network size. Since the duration of Butler is
initialized as a multiple of the slot length𝑇slot (line 2 in Algorithm 2), we can represent
𝑇𝜏 in the sync message more compactly as the number of remaining slots. To detect
and filter out corrupted packets, we use a hardware-supported CRC.

From design to implementation. Butler operates in a slotted fashion (see Algo-
rithm 2), where nodes decide to transmit or receive in every slot. The corresponding
transmit probability 𝑃TX will be low in practice (e.g., 2–4 % in the evaluation), so nodes
will often be receiving for multiple consecutive slots in a row. The nodes will continu-
ously listen for incoming messages independent of slot boundaries and only align TX
decisions to the slot grid. This implementation increases efficiency and avoids possible
sync message misses at the slot boundaries, as sync messages can be received at any
point in time.

In Butler’s design, nodes switch instantly between RX and TX and vice versa, for
example, after synchronizing to a new reference time. However, the radio hardware
requires a turnaround time of 40 µs to execute this mode change. During the switch,
the radio is deaf and cannot receive or transmit, effectively causing service downtime.
One option to alleviate this issue would be to increase the slot length 𝑇slot by the
turnaround time, which would affect all slots. However, the number of slots in which a
node synchronizes to a new reference time and is thereafter forced to transmit is only
a fraction compared to the overall number of slots. Therefore, we instead opted to skip
one slot when switching from RX to TX as it is more efficient to keep 𝑇slot unchanged.

A crucial point in Butler is the computation of the reference time 𝜏 from the received
sync message (line 17 in Algorithm 2). The remaining duration 𝑇 𝜏 is part of the sync
message and 𝑡grid is determined based on the receive timestamp. This requires that the
receive timestamp is equal to 𝑡grid of the sender, except for negligible differences due
to the time of flight of packets. We discovered that this is not the case on the nRF52840
platform and the receive timestamp is delayed by around 10 bit durations, depending
on the data rate of the current radio mode. For example, using a data rate of 250 kbps
and the IEEE 802.15.4 PHY results in a receive timestamp delay of 40 µs, which has to
be considered for the computation of 𝑡grid . As this delay splits equally between the TX
and RX paths, we have to add 20 µs to the slot length 𝑇slot , which is otherwise oriented
at the size of the sync message (Figure 3.3).

60 Chapter 3. Butler: Highly Available Low-Power Wireless Protocols

Variable transmit probabilities for efficiency. A probabilistic and independent
transmit decision is essential to make Butler fault-tolerant and avoid single points
of failure. As shown in Figure 3.1, the local slot grids are initially unaligned, but
increasingly synchronize as the execution progresses. At the beginning, the chances
are high that transmissions overlap arbitrarily and violate the timing requirement 𝑇cap
of the capture effect, which leads to a reduced communication efficiency (i.e., a lower
packet reception rate). Thus, 𝑃TX should initially be chosen cautiously to reduce the
number of transmissions. A side effect of a lower initial 𝑃TX is that fewer reference
times will be proposed, which decreases the overall convergence time. However, nodes
already aligned to the same reference time can benefit from the capture effect since their
transmissions start concurrently within 𝑇cap. With an increasing number of aligned
nodes, a higher 𝑃TX improves the convergence to the final reference time. Therefore,
the optimal value for 𝑃TX varies over time and is network-specific. A similar challenge
is faced in theMixer protocol (Chapter 2), where the transmit decisions depend on the
local node density. We tested different topologies and found that choosing 𝑃TX = 100 %

𝑁 ∗2
until a node first transmits and doubling after that provides a conservative starting
point for many topologies.

3.6 Evaluation

Based on our implementation, we evaluate Butler in a real-world wireless testbed. We
investigate Butler’s behavior and confirm its correctness, together with measurements
regarding performance and efficiency. Finally, we examine the interaction between
Butler and our ST-based communication protocol Mixer (Chapter 2), and its impact
on the communication performance. Our key findings are:

• Correctness: In our experiments, all nodes always synchronize to the same
reference time at the end of Butler, validating Butler’s correctness from the
analysis.

• Accuracy: Butler synchronizes nodes to within ±3 µs, which is well below the
maximum tolerable time offset of 160 µs (i.e., size of the capture window).

• Efficiency: Thanks to Butler’s efficient run-time execution, the temporal over-
head of synchronizing the nodes is small and significantly below 1 % in most
scenarios.

• End-to-end performance: Butler increases the availability of existing communica-
tion protocols without any negative impact on the communication performance.

3.6.1 Experimental Settings

All our experiments are executed on the FlockLab [173] testbed with 23 nodes deployed
in an office environment as shown in Figure 3.4. The experiments were conducted
during the daytime and, thus, exposed to various sources of interference, for example,

3.6. Evaluation 61

Figure 3.4: The FlockLab testbed with 23 nRF52840 devices.

Wi-Fi. Our implementation uses the nRF52840 platform and the IEEE 802.15.4 PHY.
Using a transmit power of 8 dBm, the nodes form a network with 3-4 hops.

Since the clock drift of the nodes is unknown and also subject to change, we use the
GPIO actuation capabilities of FlockLab to control the timing in our experiments. This
also allows us to test larger initial offsets between the nodes without having to run
excessively long experiments (i.e., with huge gaps between communication rounds). A
final aspect is that by using the GPIO to purposely control the timing, we also increase
the repeatability of our experiments. This way, each node realizes a random initial
offset in the range 0 ≤ 𝑡ofs ≤ 50 ms. The maximum offset Δ𝑡ofs = 50 ms corresponds to
a communication period of ≈10 min. To assess the robustness of Butler, we inject
artificial node faults. Therefore, each node independently decides with a probability
of 5 % not to participate in the next Butler execution. Furthermore, with this fault
probability, the network sometimes splits into two partitions during the experiments,
which permits an investigation of the behavior under network partitions.

In Butler, the sync information 𝜎 and𝑇𝜏 require 1 B each, resulting in a packet size of
10 B (see Section 3.5) and a slot length𝑇slot of 335 µs. Using a few trial runs, we find that
250 slots (83.75 ms) are sufficient for Butler to synchronize all nodes on FlockLab for
the considered range of initial offsets (see Section 3.6.3). We use two different values
for the transmission probability (see Section 3.5), which are 𝑃TX = 2.2 % for the time
until the first transmission, and 𝑃TX = 4.3 % afterward.

3.6.2 Butler in Action

Before delving into the evaluation of Butler’s performance, we look at its operation
in a real low-power wireless network. Figure 3.5 depicts the behavior of each of the 23
nodes on FlockLab during one representative execution of Butler. The beginning of

62 Chapter 3. Butler: Highly Available Low-Power Wireless Protocols

(a)N
odesstartButler

atdifferenttim
esbuteventually

synchronize
to

the
sam

e
reference

tim
e
ofnode

18
ataround

50m
s.N

ode
1
isfaulty.

(b)Zoom
into

the
m
arked

area
ofthe

leftplot,show
ing

the
individual

slots.D
uring

thisinterval,the
m
ostsynchronization

eventshappen.

Figure
3.5:Tim

e
synchronization

ofnodesduring
the

execution
ofButler

w
ith

colorsindicating
w
hich

reference
tim

e
a
node

follow
sduring

execution.Reference
tim

esin
the

legend
(gray

m
eansunsynchronized)are

sorted
from

earliest(𝜏18)to
latest(𝜏5).

3.6. Evaluation 63

Figure 3.6: The number of times each node proposed the final reference time is uniformly
distributed in Butler. With 1016 runs, each node is expected to be the sync origin 44 times.

a bar in Figure 3.5a indicates when a node started the execution of Butler. The color
of the bar indicates which proposed reference time a node currently follows. We can
see that the nodes start Butler at different times with Δ𝑡ofs = 50 ms. Despite these
significant initial offsets, Butler eventually makes all nodes follow the same reference
time, as indicated by the green bars in the figure.

Diving a bit deeper into Butler’s behavior in this particular run, we can see that most
nodes initially have a gray bar. This means that these nodes did not propose their own
reference time, but synchronized to the reference time of the first sync message they
received. In contrast, nodes with a colored bar at the beginning did propose their own
reference time at some point before receiving a sync message. Overall, there were 5
different reference times proposed in this execution, originating from nodes 3, 5, 7,
18, and 22. Node 18 started Butler first, a few microseconds before node 3, so the
reference time of node 18 (green) is the earliest to which all other nodes eventually
synchronize.

During the framed time interval between 15–25 ms, many nodes synchronize to new
reference times. We zoom into this interval in Figure 3.5b, where we can see the
individual slots of Butler. Looking at the orange slots, we can see how the respective
reference time propagates from hop to hop through parts of the network. At around
19 ms node 11 synchronizes to it. Two slots later, which is the implementation-specific
delay due to the RX-TX turnaround time of the radio, node 11 transmits the new
synchronization information (not shown in the figure) that is then received by the
nodes 12, 21, and 22. Again two slots later, the orange reference time is further relayed
to node 10. Eventually, however, the green reference time prevails as it is the earliest
among all proposed reference times in this particular run.

The origin of the final reference time, that is, the node which proposed it, is uniformly
distributed among all nodes over all runs as shown in Figure 3.6, underlining Butler’s
distributed nature. Moreover, the experiments show that the number of proposed
reference times is related to the transmit probability 𝑃TX . There are, on average, ≈4
different reference times.

The network splits into two partitions in a few runs due to multiple node faults. We
find that the nodes correctly synchronize to the respective reference time in each

64 Chapter 3. Butler: Highly Available Low-Power Wireless Protocols

Figure 3.7: Synchronization accuracy before and after Butler. Despite excessive initial
offsets between the nodes (top), Butler synchronizes all nodes to within a few microseconds

(bottom), which is far better than the required 𝑇cap = 160 µs.

partition. Composition into even more partitions would also work seamlessly without
adjusting the protocol.

3.6.3 Butler’s Performance and Efficiency

Accuracy. The main goal of Butler is to achieve synchronicity, such that the nodes
in the network are time-aligned within the capture window 𝑇cap. Our experiments
show that Butler achieves this goal and synchronizes the nodes well below 𝑇cap.

We use the GPIO tracing capabilities of FlockLab and mark the times when a node
starts (𝑡ofs) and finishes (𝜏) Butler. The accuracy is measured as the difference between
the observed values and the empirical mean in each Butler execution. Figure 3.7
shows the results for around 900 executions. At the top, the distribution of the initial
offsets 𝑡ofs across all nodes is as expected, since each node picks a random initial offset
between 0 and 50 ms. 1 In the lower plot we can see that despite the excessive initial
offsets, most of the nodes achieve an accuracy of ±2 µs, with at most 6 µs between any
two reference times. These values are well below the requirement of 𝑇cap = 160 µs
and validate the correctness of Butler, a necessary precondition for achieving high
accuracy.

Efficiency. We evaluate the efficiency of Butler by measuring the time it takes to
synchronize the network. To this end, we run experiments with varying maximum
offsets (Δ𝑡ofs), and nodes choose a random initial offset in the range of 0 ms ≤ 𝑡ofs ≤
Δ𝑡ofs. The time to synchronize the network starts with the first node entering Butler
and ends when all nodes are synchronized to the same reference time, for example,
≈51 ms in Figure 3.5a.

1The accuracy exceeds −25 000 µs and 25 000 µs because it is based on the empirical mean of each
Butler execution, which has some variation.

3.6. Evaluation 65

Figure 3.8: Time needed to synchronize all nodes for different initial offsets. Butler reliably
synchronizes all nodes within a few milliseconds and the synchronization time scales well

with the clock drift.

Figure 3.8 shows the distribution and mean of synchronization times for all nodes
and all Butler executions (≈1000) per experiment. We see that on FlockLab it takes
on average about 8 ms to synchronize all nodes using Butler for Δ𝑡ofs = 0 ms. With
larger offsets, the synchronization time converges toward the respective Δ𝑡ofs value.
This is because many nodes are already synchronized to the final reference time before
the last node starts Butler, as can be seen in Figure 3.5a.

Duration and overhead. In general, the duration of Butler is the sum of two factors.
One factor is the convergence time on the specific network topology, which can be
experimentally explored atΔ𝑡ofs = 0 ms and is≈35 ms (100 slots) on FlockLab. The other
factor is the maximum initial offset Δ𝑡ofs to compensate for the accumulated clock drift
since the last synchronization. Since the latter only depends on the communication
period (assuming maximum clock drift Δa), the duration of Butler can be easily
adjusted to any period during run-time; thus, Butler can be executed on demand.
However, for very long communication periods, Δ𝑡ofs can become large and exceed
Butler’s maximum duration 𝑇𝐵 (Section 3.4.1). For instance, in our experiments
𝑇𝐵 = 2 s, which corresponds to a communication period of ≈7 h. To support longer
periods, Butler would have to be executed in-between to reset the accumulated clock
drift.

Inmost scenarios, Butler only needs to be executed once per communication period, so
we report its temporal overhead in relation to the period. Our results listed in Table 3.2
demonstrate that Butler is a lightweight mechanism with very little to negligible
temporal overhead, enabling easy integration with communication protocols as Butler
does not constrain their execution. Moreover, the temporal overhead decreases as
the initial offset and associated communication period increase. For example, at a
communication period of ≈3 s, the temporal overhead drops below 1 %, with only
0.01 % at a period of 10 min. However, the increased availability of Butler does come
at the cost of increased energy consumption, as the execution time of Butler could
otherwise be spent in sleep mode.

66 Chapter 3. Butler: Highly Available Low-Power Wireless Protocols

Table 3.2: Temporal overhead of Butler for different initial offsets and their corresponding
communication periods.

Max. initial
offset (Δ𝑡ofs)

Corresponding
com. period

Butler
duration

Temporal
overhead

80 µs 1 s 33.58 ms 3.36 %
400 µs 5 s 33.9 ms 0.68 %
800 µs 10 s 34.3 ms 0.34 %
4.8 ms 1 min 38.3 ms 0.06 %
24 ms 5 min 57.5 ms 0.02 %
48 ms 10 min 81.5 ms 0.01 %

3.6.4 Making an Existing Protocol Available Through Butler

After investigating Butler’s performance and efficiency in isolation, we now turn to
the target use case where Butler is used to increase the availability of a low-power
wireless communication protocol.

Scenario and settings. As an example, we use our novel communication protocol
Mixer (Chapter 2), which offers an efficient, reliable, and scalable communication
service. However, Mixer provides no availability, often a key requirement in control
applications, as it relies on a single initiator node that starts the many-to-many packet
exchange. To overcome this problem and enable the use of multiple initiators in
Mixer, we let Butler run before every communication round to synchronize the set
of initiators. To be able to compare different settings and reproduce our results, we
use a fixed set of two initiators located at opposite ends of the FlockLab testbed and
also refrain from injecting artificial node failures.2

We compare the performance of Mixer with and without Butler for different initial
offsets between the two initiators. Compared to the previous experiments, we use
much smaller initial offsets here to show that multi-initiator Mixer requires help
from Butler already at short communication periods. However, Butler can be used
efficiently with Mixer irrespective of the communication period and resulting initial
offset. For each setting, we conduct an experimental run that involves around 500
communication rounds. We also run the original Mixer with a single initiator as a
baseline for the communication performance. In every communication round, each
node initially has a 16 B message that it needs to share with all other nodes in the
network during theMixer round, so that eventually every node has all 23 messages.
We consider two key metrics: Latency, which is the time it takes for a node to receive
all messages in a round, and reliability, which is the fraction of received messages per
round. Note that latency does not include Butler’s execution time because Butler
finishes before the scheduled communication round starts.

2Wenote that in order tomaximize availability, a larger set of initiator nodes randomly and dynamically
chosen at run-time should be used, which is straightforwardly supported by our implementation.

3.6. Evaluation 67

(a
)C

om
m
un

ic
at
io
n
la
te
nc
y.
Bu

tl
er

eff
ec
tiv

el
y
ad
dr
es
se
st
he

cl
oc
k
dr
ift

be
tw

ee
n
m
ul
tip

le
in
iti
at
or
sa

nd
en
ab
le
st
he

co
m
m
un

ic
at
io
n
pr
ot
oc
ol

to
de
liv

er
th
e
ex
pe
ct
ed

pe
rf
or
m
an
ce

at
si
gn

ifi
ca
nt
ly

in
cr
ea
se
d
av
ai
la
bi
lit
y.

(b
)
C
om

m
un

ic
at
io
n
re
lia
bi
lit
y.

W
ith

Bu
tl
er
,t
he

re
lia
bi
lit
y
re
m
ai
ns

un
ch
an
ge
d
ab
ov
e

99
.9

%.
W
ith

ou
tB

ut
le
r,

m
ul
tip

le
in
iti
at
or
s
le
ad

to
un

re
lia
bl
e
an
d
un

pr
ed
ic
ta
bl
e
co
m
m
un

ic
at
io
n
ro
un

ds
.

Fi
gu

re
3.
9:
Co

m
m
un

ic
at
io
n
pe
rf
or
m
an
ce

of
M
ix
er

us
in
g
m
ul
tip

le
in
iti
at
or
sw

ith
an
d
w
ith

ou
tB

ut
le
r.

68 Chapter 3. Butler: Highly Available Low-Power Wireless Protocols

Results. Figure 3.9a shows the latency distribution with single- and multi-initiator
Mixer for different initial offsets; markers indicate the 1st and 99th percentiles. We can
see that without Butler, the latency increases significantly by up to 2.8× for increasing
initial offsets. When instead extending it with Butler, the latency of multi-initiator
Mixer remains as low as for the original Mixer with a single initiator while providing
higher availability. This is thanks to Butler’s ability to accurately synchronize the
initiators, which becomes an absolute necessity already for an initial offset of 160 µs to
achieve high performance. Thus, the experiments also confirm our assumption about
𝑇cap for correctness in Section 3.4.1.

Figure 3.9b shows the reliability of single- and multi-initiatorMixer for different initial
offsets when we limit the length of the multi-initiatorMixer rounds to the time needed
by single-initiator Mixer (about 300 ms). This scenario is representative of typical
constraints found in control applications, where interactions between distributed
sensors and actuators must be completed within hard real-time deadlines to match the
dynamics of physical processes [4]. Looking at Figure 3.9b, we see without Butler
the mean reliability decreases dramatically by up to 30 % as the initial offset increases.
With Butler, the reliability remains unchanged and always above 99.9 %.

In summary, these results demonstrate that Butler effectively solves the problem
of clock drift when using multiple initiators. Butler increases the availability of
low-power wireless communication without sacrificing performance.

3.7 Related Work

Butler is the first work to address the availability problem of ST-based communication
protocols. However, the underlying concept is closely related to the existing literature
on time synchronization. Most time synchronization algorithms aim to provide an
accurate, globally shared, and constantly available time base to all nodes in the network.
While this is a powerful synchronization service that is essential for some applications,
it needs to run periodically, and the associated overhead in terms of energy, time, and
wireless bandwidth is very high. In fact, to distribute the initiator role among multiple
nodes, which is what Butler aims for to increase availability, the nodes do not need a
globally shared time base that is maintained for the entire lifetime of the system: all
they need is to be able to perform a coordinated action [89]. This is also known as
synchronicity [180] and can be achieved with less effort compared to full-fledged time
synchronization.

Many time synchronization protocols, including TPSN [54], FTSP [119], Glossy [48],
PulseSync [95], and TATS [100], use one dedicated node as a time reference for the
entire network. Generally, these algorithms achieve excellent synchronization accuracy
but are not fault-tolerant, which is a prerequisite for high availability. Furthermore,
they often rely on topology information, causing instability in dynamic networks.
The single node providing the reference time is also insufficient if the network splits

3.7. Related Work 69

into several isolated partitions. Butler overcomes these issues by adopting a fully
distributed approach that does not rely on topology information.

Over the years, several distributed synchronization protocols have been developed to
mitigate centralization issues, such as RFA [180], DCTS [154], ATS [153], MTS [62],
and MACTS [158]. These protocols do not rely on special nodes and are thus more
robust and versatile than their centralized counterparts. The downside, however, is
that these algorithms typically require a significant amount of time to synchronize
the network, ranging from tens of seconds to multiple minutes. By contrast, Butler
needs only tens of milliseconds to synchronize an entire network to within a few
microseconds, thus substantially saving energy, time, and wireless bandwidth. The
difference is that in most synchronization protocols, the nodes converge, for example,
by averaging the local clocks in an iterative process, which is needed to find a stable
global time but requires a large number of messages to determine and account for
the different clock drifts [158]. Furthermore, nodes that lose their state, for example,
due to a failure, potentially require all nodes to converge again. Butler does not
adjust clock drift and uses the natural order of proposed reference times, requiring
only a few messages to achieve the goal of synchronicity. Butler’s short duration also
simplifies the integration with communication protocols, which can be difficult with
existing time synchronization protocols due to their significant overhead and the need
for periodic executions.

70 Chapter 3. Butler: Highly Available Low-Power Wireless Protocols

Postscript

In response to the availability weakness of ST-based communication protocols, we
have designed Butler, a new distributed low-power wireless synchronization scheme
that eliminates their single point of failure. Butler can be used on demand anytime
synchronization is needed, such as before communication with ST-based protocols. A
formal analysis shows that Butler can correctly synchronize the network toward the
same reference time, and experiments validate this claim and reveal an exceptional
accuracy of ±3 µs. At the same time, its temporal overhead ranges well below 1 %.
Moreover, we demonstrate that using Mixer and Butler together makes a truly
fault-tolerant low-power wireless protocol feasible. Since Butler does not interfere
with the communication protocol, the communication performance remains virtually
unchanged while its last vulnerability is eliminated. Thus, Butler helps to fulfill the
high dependability requirements of present and emerging CPS applications.

Part II

Wireless Cyber-Physical Systems

4
Feedback Control Goes Wireless: Guaranteed

Stability over Low-Power Multi-Hop Networks

Preface

In the second part of this thesis, we are devoted to developing and analyzing real-
world wireless CPS based on a tight co-design approach of communication and control.
Specifically, we focus on the need to close feedback loops fast and over long distances,
which is key to emerging applications; for example, robot motion control and swarm
coordination require update intervals of tens of milliseconds. Prior works on wireless
control that validate their designs through experiments on physical platforms have only
been demonstrated for systems with slow dynamics or in small single-hop networks,
significantly alleviating the challenges.

In this chapter, we demonstrate the feasibility of fast feedback control with stability
guarantees via low-power wireless multi-hop networks. Our wireless embedded system
is based on a co-design that tames imperfections impairing the control performance
(e.g., jitter and message loss) to the extent possible and exploits the essential properties
of this system in the control design. Due to careful orchestration of communication and
control tasks at run-time, we can meet real-time constraints and provably guarantee
closed-loop stability for physical processes with LTI dynamics. Experiments on a
CPS testbed with 20 wireless nodes and multiple cart-pole systems show, for the first
time, feedback control and coordination over wireless multi-hop networks for update
intervals of 20–50 ms.

74 Chapter 4. Feedback Control Goes Wireless

4.1 Introduction

CPS use embedded computers and networks to monitor and control physical sys-
tems [39]. While monitoring using sensors allows, for example, to better understand
certain characteristics of environmental processes [32], it is control and coordination
through actuators what nurtures the CPS vision exemplified by robotic materials [33],
smart transportation [19], and multi-robot swarms for disaster response and manufac-
turing [61].

A key hurdle to realizing this vision is how to close the feedback loops between sensors
and actuators as these may be numerous, mobile, distributed over large spaces, and
attached to devices with size, weight, and cost constraints. Wireless multi-hop com-
munication among low-power, possibly battery-powered devices1 provides the cost
efficiency and flexibility to overcome this hurdle [101, 179] if two requirements are met.
First, fast feedback is needed to keep up with the dynamics of physical systems [12]; for
example, robot motion control and drone swarm coordination require update intervals
of tens of milliseconds [1, 140]. Second, as feedback control modifies the dynamics
of physical systems [11], guaranteeing closed-loop stability under imperfect wireless
communication is a major concern.

Hence, this chapter investigates the following question: Is it possible to enable fast feed-
back control and coordination across real-world low-power wireless multi-hop networks
with formal guarantees on closed-loop stability? Prior works on control over wireless
that validate their design through experiments on physical platforms do not provide
an affirmative answer. As shown in Figure 4.1 and detailed in Section 4.2, solutions
based on multi-hop communication have only been demonstrated for physical systems
with slow dynamics (i.e., update intervals of seconds) and do not provide stability
guarantees. Practical solutions with stability guarantees for fast process dynamics (i.e.,
update intervals of tens of milliseconds as typical of, e.g., mechanical systems) exist,
but these are only applicable to single-hop networks and therefore lack the scalability
and flexibility required by many future CPS applications [61, 108].

Contribution and roadmap. This chapter presents the design, analysis, and practical
validation of a wireless CPS that fills this gap. Section 4.3 highlights the main challenges
and corresponding system design goals we must achieve when closing feedback loops
fast over wireless multi-hop networks. Our approach is based on a careful co-design
of the wireless embedded components (in terms of hardware and software) and the
closed-loop control system, as described in Section 4.4 and Section 4.5. More concretely,
we tame typical wireless network imperfections, such as message loss and jitter, so
that they can be tackled by well-known control techniques or safely neglected. As a
result, our solution is amenable to a formal end-to-end analysis of all CPS components
(i.e., wireless embedded, control, and physical systems), which we exploit to provably
guarantee closed-loop stability for physical systems with LTI dynamics. Moreover,

1While actuators may need wall power, low-power operation is crucial for sensors and controllers,
which may run on batteries and harvest energy from the environment [4].

4.2. Related Work 75

Process
Dynamics

fast

slow

Network Diameter

single-hop multi-hop

This

Dryer plants
100–200 ms [188]
Structural control

80 ms [109]
Inverted pendulum

5–60 ms [14, 67, 136]

Double-tank system
1–10 s [10]

Adaptive lighting
30 s [27]

Data center management
>20 s [150]

Figure 4.1: Design space of wireless CPS that have been validated on physical platforms
and real wireless networks.

unlike prior work, our solution supports control and coordination of multiple physical
systems out of the box, which is a key asset in many CPS applications [1, 61, 140].

To evaluate our design in Section 4.6, we have developed a CPS testbed that consists
of 20 wireless embedded devices forming a three-hop network and multiple cart-pole
systems whose dynamics match a range of real-world mechanical systems [11, 171]. As
such, our testbed addresses an important need in CPS research [101]. Our experiments
reveal the following key findings: a) two inverted pendulums can be safely stabilized
by two remote controllers across the three-hop wireless network; b) the movement of
five cart-poles can be synchronized reliably over the network; c) increasing message
loss rates and update intervals can be tolerated at reduced control performance; and
d) the experiments confirm our analyses.

In summary, this work contributes the following:

• We are the first to demonstrate feedback control and coordination across real low-
power wireless multi-hop networks at update intervals of 20 to 50 milliseconds.

• We formally prove that our end-to-end CPS design guarantees closed-loop sta-
bility for physical systems with LTI dynamics.

• Experiments on a novel CPS testbed show that our solution can stabilize and
synchronize multiple inverted pendulums despite significant message loss.

4.2 Related Work

Feedback control over wireless communication networks has been extensively studied.
For instance, the control community has investigated control design and stability
analysis for wireless (and wired) networks based on different system architectures,
delay models, and message loss processes (see, e.g., [6, 55, 104, 142, 160, 161, 175, 185,
193]); recent surveys provide an overview of this body of fundamental research [69, 191].

76 Chapter 4. Feedback Control Goes Wireless

However, the majority of those works focuses on theoretical analyses or validates
new wireless CPS designs (e.g., based on WirelessHART [96, 111]) only in simulation,
thereby ignoring many fundamental challenges that may complicate or prevent a real
implementation [101]. One of the challenges, as detailed in Section 4.3, is that even
slight variations in the quality of a wireless link can trigger drastic changes in the
routing topology [27]—and this can happen several times per minute [56]. Hence,
to establish trust in feedback control over wireless, a real-world validation against
these dynamics on a realistic CPS testbed is absolutely essential [101], as opposed to
considering setups with a statically configured routing topology and only a few nodes
on a desk as, for example, in [155].

Figure 4.1 classifies prior control-over-wireless solutions that have been validated
using experiments on physical platforms and against the dynamics of real wireless
networks along two dimensions: the diameter of the network (single-hop or multi-hop)
and the dynamics of the physical system (slow or fast). While not representing absolute
categories, we use slow to refer to update intervals on the order of seconds, which is
typically insufficient for feedback control of, for example, mechanical systems.

In the single-hop/slow category, Araújo et al. [10] investigate resource efficiency
of aperiodic control with closed-loop stability in a single-hop wireless network of
IEEE 802.15.4 devices. Using a double-tank system as the physical process, update
intervals of 1–10 s are sufficient.

A number of works in the single-hop/fast class stabilize an inverted pendulum via a
controller that communicates with a sensor-actuator node at the cart. The update
interval is 60 ms or less, and the interplay of control and network performance, as
well as closed-loop stability are investigated for different wireless technologies: Blue-
tooth [44], IEEE 802.11 [136], and IEEE 802.15.4 [14, 67]. Belonging to the same class,
Ye et al. use three IEEE 802.11 nodes to control two dryer plants at update intervals of
100–200 ms [188], and Lynch et al. use four proprietary wireless nodes to demonstrate
control of a three-story test structure at an update interval of 80 ms [109].

For multi-hop networks, there are only solutions for slow process dynamics and with-
out stability analysis. For example, Ceriotti et al. study adaptive lighting in road
tunnels [27]. Owing to the length of the tunnels, multi-hop communication becomes
unavoidable, yet the required update interval of 30 s allows for a reliable solution built
out of mainstream sensor network technology. Similarly, Saifullah et al. present a
multi-hop solution for power management in data centers, using update intervals of
20 s or greater [150].

In contrast to these works, as illustrated in Figure 4.1, we demonstrate fast feedback
control over wireless multi-hop networks at update intervals of 20–50 ms, which is
significantly faster than existing multi-hop solutions. Moreover, we provide a formal
stability proof, and our solution seamlessly supports both control and coordination of
multiple physical systems, which we validate through experiments on a real-world
CPS testbed.

4.3. Problem Setting and Approach 77

Figure 4.2: Application tasks and message transfers of a single feedback loop. In every
iteration, the sensing task (S) takes a measurement of the physical system and sends it to
the control task (C), which computes a control signal and sends it to the actuation task (A).

4.3 Problem Setting and Approach

Scenario. We consider wireless CPS that consist of a set of embedded devices equipped
with low-power wireless radios. The devices execute different application tasks (i.e.,
sensing, control, and actuation) that exchange messages over a wireless multi-hop
network. Each node may execute multiple application tasks, which may belong to
different distributed feedback loops. As an example, Figure 4.2 shows the execution of
application tasks and the exchange of messages for a single periodic feedback loop with
one sensor and one actuator. The update interval 𝑇𝑈 is the time between consecutive
sensing or actuation tasks. The end-to-end delay 𝑇𝐷 is the time between corresponding
sensing and actuation tasks.

Challenges. Fast feedback control over wireless multi-hop networks is an open
problem due to the following challenges:

• Lower end-to-end throughput. Multi-hop networks have a lower end-to-end
throughput than single-hop networks because of interference: the theoretical
multi-hop upper bound is half the single-hop upper bound [133]. This limits the
number of sensors and actuators that can be supported for a given maximum
update interval.

• Significant delays and jitter. Multi-hop networks also incur longer end-to-end
delays, and the delays are subject to larger variations because of retransmissions
or routing dynamics [27], introducing significant jitter. Delays and jitter can
both destabilize a feedback system [175, 183].

• Constrained traffic patterns. In a single-hop network, each node can communicate
with every other node due to the broadcast property of the wireless medium. This
is generally not the case in a multi-hop network. For example, WirelessHART
only supports communication to and from a gateway that connects the wireless
network to the control system. Feedback control under constrained traffic
patterns is more challenging and may imply poor control performance or even
infeasibility of closed-loop stability [187].

78 Chapter 4. Feedback Control Goes Wireless

• Correlated message loss. Message loss is a common phenomenon in wireless
networks, which complicates control design. Further, because there is often sig-
nificant correlation among the message losses [162], a valid theoretical analysis
to provide strong guarantees is hard, if not impossible.

• Message duplicates and out-of-order message delivery are typical in wireless
multi-hop protocols [43, 56] and may further hinder control design and stability
analysis [191].

Approach. We adopt the following co-design approach to enable fast feedback control
over wireless multi-hop networks: Address the challenges on the wireless embedded
system side to the extent possible, and then consider the resulting key properties in the
control design. This entails the design of a wireless embedded system that aims to:

G1 reduce and bound imperfections impairing control performance (e.g., reduce 𝑇𝑈
and 𝑇𝐷 and bound their jitter);

G2 support arbitrary traffic patterns in multi-hop networks with real dynamics (e.g.,
time-varying link qualities);

G3 operate efficiently in terms of limited resources, while accommodating the
computational needs of the controller.

On the other hand, the control design aims to:

G4 incorporate all essential properties of the wireless embedded system to guarantee
closed-loop stability for the entire CPS for physical systems with LTI dynamics;

G5 enable an efficient implementation of the control logic on state-of-the-art low-
power embedded devices;

G6 exploit the support for arbitrary traffic patterns for straightforward distributed
control and multi-agent coordination.

4.4 Wireless Embedded System Design

To achieve goals G1–G3, we design a wireless embedded system that consists of three
key building blocks:

1) a low-power wireless protocol that provides multi-hop many-to-all communica-
tion with minimal, bounded end-to-end delay and accurate network-wide time
synchronization;

2) a hardware platform that enables a predictable and efficient execution of all
application tasks and message transfers;

3) a scheduling framework to schedule all application tasks and message transfers
so that given bounds on𝑇𝑈 and𝑇𝐷 are met at minimum energy costs for wireless
communication.

4.4. Wireless Embedded System Design 79

Figure 4.3: Time-triggered operation of low-power wireless multi-hop protocol. Communi-
cation occurs in rounds that are scheduled with a given round period 𝑇 . Every beacon (b)
and data slot in a round corresponds to an efficient, reliable one-to-all Glossy flood [48].

We describe each building block below, followed by an analysis of the resulting prop-
erties that matter for the control design.

4.4.1 Low-Power Wireless Protocol

To support arbitrary traffic patterns (G2), we require a multi-hop protocol capable of
many-to-all communication. Moreover, the protocol must be highly reliable and the
time needed for many-to-all communication must be tightly bounded (G1). It has been
shown that a solution based on Glossy floods [48] can meet these requirements with
high efficiency (G3) in the face of wireless dynamics (G2) [195]. Thus, similar to other
recent proposals [49, 73], we design a wireless protocol on top of Glossy, but aim at a
new design point: bounded end-to-end delays of at most a few tens of milliseconds for
the many-to-all exchange of multiple messages in a control cycle.

As shown in Figure 4.3, the operation of the protocol proceeds as a series of periodic
communication rounds with period 𝑇 . Each round consists of a sequence of non-
overlapping time slots. In every time slot, all nodes in the network participate in
a Glossy flood, where a message is sent from one node to all other nodes. Glossy
approaches the theoretical minimum latency for one-to-all flooding at a reliability
above 99.9 %, and provides microsecond-level network-wide time synchronization [48].
In particular, a flood initiated by a dedicated node in the beacon slot (b) at the beginning
of every round is used for synchronization. Nodes exploit the synchronization to remain
in a low-power sleep mode between rounds and to awake in time for the next round,
as specified by the round period 𝑇 .

It is important to note that, because of the way Glossy exploits ST [48], the wireless
protocol operates independently of the time-varying network topology. In particular,
this means that the wireless protocol and any logic built on top of it, such as a control
algorithm, need not worry about the state of individual wireless links in the network.
This is a key difference to existing wireless protocols based on routing, such as Wire-
lessHART and 6TiSCH, which, as we shall see, simplifies the control design and allows
for providing formal guarantees that also hold in practice.

As detailed in Section 4.4.3, we compute the communication schedule offline based
on the traffic demands, and distribute it to all nodes before the application operation
starts. A schedule includes the assignment of messages to data slots in each round

80 Chapter 4. Feedback Control Goes Wireless

(see Figure 4.3) and the round period 𝑇 . Using static schedules brings several benefits.
First, we can a priori verify if closed-loop stability can be guaranteed for the achievable
latencies (see Section 4.5). Second, compared to prior solutions [49, 73, 195, 74], we
can support significantly shorter latencies, and the protocol is more energy efficient
(no need to send schedules) and more reliable (schedules cannot be lost).

4.4.2 Hardware Platform

CPS devices need to concurrently handle application tasks and message transfers.
Whilemessage transfers involve little but frequent computations, sensing and especially
control tasks may require less frequent, but more demanding computations (e.g.,
floating-point operations). An effective approach to achieve low latency and high
energy efficiency for such diverse workloads is to exploit hardware heterogeneity (G3).

For this reason, we leverage a heterogeneous dual-processor platform (DPP). Applica-
tion tasks execute exclusively on a 32-bit MSP432P401R ARM Cortex-M4F application
processor (AP) running at 48 MHz, while the wireless protocol executes on a dedicated
16-bit CC430F5147 communication processor (CP) running at 13 MHz. The AP has
a floating-point unit and a rich instruction set, accelerating computations related to
sensing and control. The CP features a low-power microcontroller and a low-power
wireless radio operating at 250 kbps in the 868 MHz frequency band.

AP and CP are interconnected using Bolt [166], an ultra-low-power processor in-
terconnect that supports asynchronous bidirectional message passing with formally
verified worst-case execution times. Bolt decouples the two processors with respect
to time, power, and clock domains, enabling energy-efficient concurrent executions
with only small and bounded interference, thereby limiting jitter and preserving the
time-sensitive operation of the wireless protocol.

All CPs are time-synchronized via the wireless protocol. In addition, AP and CP must
be synchronized locally on each DPP to minimize end-to-end delay and jitter among ap-
plication tasks running on different APs (G1). To this end, we use a GPIO line between
the two processors, called SYNC line. Every CP asserts the SYNC line in response to
an update of Glossy’s time synchronization. Every AP schedules application tasks
and message passing over Bolt with specific offsets relative to these SYNC line events
and resynchronizes its local time base. Likewise, the CPs execute the communication
schedule and perform SYNC line assertion and message passing over Bolt with specific
offsets relative to the start of communication rounds. As a result, all APs and CPs act
in concert.

4.4.3 Scheduling Framework

We illustrate the scheduling problem we need to solve with a simple example, where
node P senses and acts on a physical system and node C runs the controller.

Figure 4.4 shows a possible schedule of the application tasks and message transfers.
After sensing (S1), APP writes a message containing the sensor reading into Bolt (w).

4.4. Wireless Embedded System Design 81

Fi
gu

re
4.
4:
Ex

am
pl
e
sc
he
du

le
of

ap
pl
ic
at
io
n
ta
sk
sa

nd
m
es
sa
ge

tr
an
sf
er
sb

et
w
ee
n
tw

o
D
PP

s.
N
od

e
P
se
ns
es

an
d
ac
ts
on

a
ph

ys
ic
al
sy
st
em

,w
hi
le
no

de
C
ru
ns

th
e
co
nt
ro
lle
r.
In

th
is
ex
am

pl
e,
th
e
up

da
te

in
te
rv
al
𝑇
𝑈
is
ha
lf
th
e
en
d-
to
-e
nd

de
la
y
𝑇
𝐷
.

82 Chapter 4. Feedback Control Goes Wireless

CPP reads out the message (r) before the communication round in which that message
(𝑚𝑆1) is sent using the wireless protocol. CPC receives the message and writes it into
Bolt. After reading out the message from Bolt, APC computes the control signal (C1)
and writes a message containing it into Bolt. The message (𝑚𝐶1) is sent to CPP in the
next round, and then APP applies the control signal on the physical system (A1).

This schedule resembles a pipelined execution, where in each communication round the
last sensor reading and the next control signal (computed based on the previous sensor
reading) are exchanged (𝑚𝑆1𝑚𝐶0,𝑚𝑆2𝑚𝐶1, . . .). Note that while it is indeed possible to
send the corresponding control signal in the same round (𝑚𝑆1𝑚𝐶1,𝑚𝑆2𝑚𝐶2, . . .), doing
so would increase the update interval 𝑇𝑈 at least by the sum of the execution times of
the control task, Bolt read, and Bolt write. For the example schedule in Figure 4.4, the
update interval 𝑇𝑈 is exactly half the end-to-end delay 𝑇𝐷 .

In general, the scheduling problem entails computing the communication schedule and
the offsets with which all APs and CPs in the system perform wireless communication,
execute application tasks, transfer messages over Bolt, and assert the SYNC line. The
problem gets extremely complex for any realistic scenario with more nodes or multiple
feedback loops that are closed over the same wireless network, so solving it must be
automated.

To this end, we leverage Time-Triggered Wireless (TTW) [75], an existing framework
tailored to solve this type of scheduling problem. TTW takes as main input a depen-
dency graph among application tasks and messages, similar to Figure 4.2. Based on
an integer linear program, it computes the communication schedule and all offsets
mentioned above. TTW provides three important guarantees: a) a feasible solution
is found if one exists, b) the solution minimizes the energy consumption for wireless
communication, and c) the solution can additionally optimize user-defined metrics
(e.g., minimize the update interval 𝑇𝑈 as for the schedule in Figure 4.4).

4.4.4 Essential Properties and Jitter Analysis

Essential properties. The presented wireless embedded system design provides the
following key properties for the control design:

P1 As analyzed below, for update intervals𝑇𝑈 and end-to-end delays𝑇𝐷 up to 100 ms,
the worst-case jitter on 𝑇𝑈 and 𝑇𝐷 is bounded by ±50 µs. It holds 𝑇𝐷 = 2𝑇𝑈 .

P2 Statistical analysis of millions of Glossy floods [194] and percolation theory for
time-varying networks [79] have shown that the spatio-temporal diversity in a
Glossy flood reduces the temporal correlation in the series of received and lost
messages by a node, to the extent that the series can be safely approximated by
an independent and identically distributed (i.i.d.) Bernoulli process. The success
probability in real multi-hop networks is typically larger than 99.9 % [48].

P3 By provisioning for multi-hop many-to-all communication, arbitrary traffic
patterns are efficiently supported.

4.5. Control Design and Analysis 83

P4 It is guaranteed by design that message duplicates and out-of-order message
deliveries do not occur.

Worst-case jitter analysis. To underpin P1, we analyze the worst-case jitter on 𝑇𝑈
and 𝑇𝐷 . We refer to ˜︁𝑇end as the nominal time interval between the end of two tasks
executed on (possibly) different APs. Due to jitter 𝐽 , this interval may vary, resulting
in an actual length of ˜︁𝑇end + 𝐽 . In our system, the jitter is bounded by

| 𝐽 | ≤ 2
(︂
𝑒ref + 𝑒SYNC + ˜︁𝑇end (�̂�AP + �̂�CP))︂ + 𝑒 task (4.1)

where each term on the right-hand side of (4.1) is detailed below.

1) Time synchronization error between CPs. Using Glossy, each CP computes an estimate
of the reference time [48] to schedule subsequent activities. In doing so, each CP makes
an error 𝑒ref with respect to the reference time of the initiator. Using the approach
from [48], we measure 𝑒ref for our Glossy implementation and a network diameter of
up to nine hops. Based on 340,000 data points, we find that 𝑒ref ranges always between
−7.1 µs and 8.6 µs. We thus consider 𝑒ref = 10 µs a safe bound for the jitter on the
reference time between CPs.

2) Independent clocks on CP and AP. Each AP schedules activities relative to SYNC line
events. As AP and CP are sourced by independent clocks, it takes a variable amount of
time until an AP detects that CP asserted the SYNC line. The resulting jitter is bounded
by 𝑒SYNC = 1/𝑓AP , where 𝑓AP = 48 MHz is the frequency of APs clock.

3) Different clock drift at CPs and APs. The real offsets and durations of activities on
the CPs and APs depend on the frequency of their clocks. Various factors contribute to
different frequency drifts 𝜌CP and 𝜌AP , including the manufacturing process, ambient
temperature, and aging effects. State-of-the-art clocks, however, drift by at most
�̂�CP = �̂�AP = 50 ppm [95].

4) Varying task execution times. The difference between the task’s best- and worst-case
execution time 𝑒 task adds to the jitter. For the jitter on the update interval 𝑇𝑈 and the
end-to-end delay 𝑇𝐷 , only the execution time of the actuation task matters, which
typically exhibits little variance as it is short and highly deterministic. For example,
the actuation task in our experiments has a jitter of ±3.4 µs. To be safe, we consider
𝑒 task = 10 µs for our analysis.

Using (4.1) and the above values, we can compute the worst-case jitter for a given
interval ˜︁𝑇end . Fast feedback control as considered in this work requires ˜︁𝑇end = 𝑇𝐷 =

2𝑇𝑈 ≤ 100 ms, which gives a worst-case jitter of ±50 µs on 𝑇𝑈 and 𝑇𝐷 , as stated by
property P1.

4.5 Control Design and Analysis

Building on the design of the wireless embedded system and its properties P1–P4,
this section addresses the design of the control system to accomplish goals G4–G6

84 Chapter 4. Feedback Control Goes Wireless

from Section 4.3. Because the wireless system supports arbitrary traffic patterns (P3),
various control tasks can be solved regardless of whether sensors, actuators, physical
system(s), and controller(s) are co-located or spatially distributed. This includes typical
single-loop tasks such as stabilization, disturbance rejection, or set-point tracking, as
well as multi-agent scenarios such as synchronization, consensus, or formation control.

Here, we focus on remote stabilization and synchronization of multiple agents over
wireless multi-hop networks as prototypical examples for both the single- and multi-
agent case. For stabilization, modeling and control design are presented in Section 4.5.1
and Section 4.5.2, thus achieving G5. The stability analysis is provided in Section 4.5.3,
which fulfills G4. Synchronization is discussed in Section 4.5.4, highlighting support
for straightforward distributed control G6.

4.5.1 Model of Wireless Control System

We address the remote stabilization task depicted in Figure 4.5 (left), where controller
and physical system are associated with different nodes, which can communicate via
the wireless network. Such a scenario is relevant for instance in process control, where
the controller often resides at a remote location [111]. We consider stochastic LTI
dynamics for the physical process

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) + 𝑣 (𝑘). (4.2a)

This model describes the evolution of the system state 𝑥 (𝑘) ∈ R𝑛 with discrete time
index 𝑘 ∈ N in response to the control input 𝑢 (𝑘) ∈ R𝑚 and random process noise
𝑣 (𝑘) ∈ R𝑛 . As typical in the literature [11, 69], the process noise is modeled as an i.i.d.
Gaussian random variable with zero mean and variance Σproc, 𝑣 (𝑘) ∼ N (0, Σproc), and
captures, for example, uncertainty in the model.

We assume that the full system state 𝑥 (𝑘) can be measured through appropriate sensors,
that is,

𝑦 (𝑘) = 𝑥 (𝑘) +𝑤 (𝑘), (4.2b)

with sensor measurements𝑦 (𝑘) ∈ R𝑛 and sensor noise𝑤 (𝑘) ∈ R𝑛 ,𝑤 (𝑘) ∼ N (0, Σmeas).
If the complete state vector cannot be measured directly, it can typically be recon-
structed via state estimation techniques [11].

The process model in (4.2) is stated in discrete time. This representation is particularly
suitable here as the wireless embedded system offers a constant update interval𝑇𝑈 with
worst case jitter of ±50 µs (P1), which can be neglected from controls perspective [28,
p. 48]. Thus,𝑢 (𝑘) and𝑦 (𝑘) in (4.2) represent sensing and actuation at periodic intervals
𝑇𝑈 , as illustrated in Figure 4.4.

As shown in Figure 4.5, measurements 𝑦 (𝑘) and control inputs �̂� (𝑘) are sent over the
wireless network. According to P1 and P2, both arrive at the controller, respectively
system, with a delay of 𝑇𝑈 and with a probability governed by two independent

4.5. Control Design and Analysis 85

Controller
�̂� (𝑘)

Wireless Network

Physical System
𝑥 (𝑘)

A S

�̂� (𝑘 + 1) 𝑦 (𝑘 − 1)
if \ =1

�̂� (𝑘)
if 𝜙 =1 𝑦 (𝑘)

Physical
System 1
𝑥1 (𝑘)

A S
Physical
System 2
𝑥2 (𝑘)

S A

Wireless Network

Ctrl 1 Ctrl 2

𝑦2 (𝑘)

𝑦1 (𝑘 − 1)
if 𝜙 =1

𝑢1 (𝑘)

𝑦2 (𝑘 − 1)
if \ =1

𝑢2 (𝑘)𝑦1 (𝑘)

Figure 4.5: Wireless control tasks: stabilization (left) and synchronization (right). The
feedback loop for stabilizing the physical system (left) is closed over the low-power wireless
multi-hop network. This induces delays andmessage loss, which is captured by i.i.d. Bernoulli
variables \ and 𝜙 . Two physical systems, each with a local controller (Ctrl), are synchronized

over the wireless network (right).

Bernoulli processes. We represent the Bernoulli processes by \ (𝑘) and 𝜙 (𝑘), which
are i.i.d. binary variables, indicating lost (\ (𝑘) = 0, 𝜙 (𝑘) = 0) or successfully received
(\ (𝑘) = 1, 𝜙 (𝑘) = 1) messages. To ease notation and since both variables are i.i.d.,
we can omit the time index in the following without any confusion. We denote the
probability of successful message delivery by `\ (i.e., P[\ = 1] = `\), respectively `𝜙 .
As both, measurements and control inputs, are delayed, it also follows that in case of
no message losses, the applied control input 𝑢 (𝑘) depends on the measurement two
steps ago 𝑦 (𝑘 − 2). If a control input message is lost, the input stays constant since
zero-order hold is used at the actuator, that is,

𝑢 (𝑘) = 𝜙�̂� (𝑘) + (1 − 𝜙)𝑢 (𝑘 − 1) . (4.3)

The model proposed in this section thus captures the properties P1, P2, and P4. While
P1 and P2 are incorporated in the presented dynamics and message loss models, P4
means that there is no need to take duplicated or out-of-order sensor measurements and
control inputs into account. Overall, these properties allow for accurately describing
the wireless CPS by a fairly straightforward model, which greatly facilitates subsequent
control design and analysis. Property P3 is not considered here, where we deal with a
single control loop, but will become essential in Section 4.5.4.

4.5.2 Controller Design

Designing a feedback controller for the system in (4.2), we proceed by first discussing
state-feedback control for the nominal system (i.e., without delays, message loss, and
noise), and then enhance the design to cope with the network and sensing imperfec-
tions.

Nominal design. Assuming ideal measurements, 𝑦 (𝑘) = 𝑥 (𝑘) holds. A common
strategy in this setting is static state-feedback control, 𝑢 (𝑘) = 𝐹𝑥 (𝑘), where 𝐹 is a

86 Chapter 4. Feedback Control Goes Wireless

constant feedback matrix, which can be designed, for instance, via pole placement or
methods from optimal control, such as the linear quadratic regulator (LQR) [7, 11].
Under the assumption of controllability [11], desired (in particular, stable) dynamics
can be obtained for the state in (4.2a) in this way.

Actual design. We augment the nominal state-feedback design to cope with non-
idealities, in particular, delayed measurements and message loss, as shown in Figure 4.5
(left).

Because the measurement arriving at the controller 𝑦 (𝑘 − 1) represents information
that is one time step in the past, the controller propagates the system for one step as
follows:

�̂� (𝑘) = \𝐴𝑦 (𝑘−1) + (1−\)𝐴�̂� (𝑘−1) + 𝐵�̂� (𝑘−1)
= \𝐴𝑥 (𝑘−1) + (1−\)𝐴�̂� (𝑘−1) + 𝐵�̂� (𝑘−1) + \𝐴𝑤 (𝑘−1), (4.4)

where �̂� (𝑘) is the predicted state, and �̂� (𝑘) is the control input computed by the
controller (to be made precise below). Both variables are computed by the controller
and represent its internal states. The rationale of (4.4) is as follows: If the measurement
message is delivered (the controller has information about \ because it knows when
to expect a message), we compute the state prediction based on this measurement
𝑦 (𝑘−1)=𝑥 (𝑘−1) +𝑤 (𝑘−1); if the message is lost, we propagate the previous prediction
�̂� (𝑘−1). As there is no feedback on lost control messages (i.e., about 𝜙) and thus a
potential mismatch between the computed input �̂� (𝑘−1) and the actual 𝑢 (𝑘−1), the
controller can only use �̂� (𝑘−1) in the prediction.

Using �̂� (𝑘), the controller has an estimate of the current state of the system. However,
it will take another time step for the currently computed control input to arrive at the
physical system. For computing the next control input, we thus propagate the system
another step,

�̂� (𝑘 + 1) = 𝐹 (𝐴�̂� (𝑘) + 𝐵�̂� (𝑘)), (4.5)

where 𝐹 is as in the nominal design. The input �̂� (𝑘 + 1) is then transmitted over the
wireless network (see Figure 4.5, left).

The overall controller design requires only a few matrix multiplications per execution.
This can be efficiently implemented on embedded devices, thus satisfying goal G5.

4.5.3 Stability Analysis

We now present a stability proof for the closed-loop system given by the dynamic
system described in Section 4.5.1 and the proposed controller from Section 4.5.2. Be-
cause the model in Section 4.5.1 incorporates the physical process and the essential
properties of the wireless embedded system, we achieve goal G4.

4.5. Control Design and Analysis 87

While the process dynamics in (4.2) are time invariant, message loss introduces time
variation and randomness into the system dynamics. Therefore, we leverage stability
results for linear, stochastic, time-varying systems [24]. For ease of exposition, we
consider (4.2) without process and measurement noise (i.e., 𝑣 (𝑘) = 0 and𝑤 (𝑘) = 0), and
comment later on extensions. We first introduce required definitions and preliminary
results, and then apply those results to our problem.

Consider the system

𝑧 (𝑘 + 1) = �̃�(𝑘)𝑧 (𝑘) (4.6)

with state 𝑧 (𝑘) ∈ R𝑛 and �̃�(𝑘) = �̃�0+
∑︁𝐿
𝑖=1 �̃�𝑖𝑝𝑖 (𝑘); the 𝑝𝑖 (𝑘) are i.i.d. random variables

with mean E[𝑝𝑖 (𝑘)] = 0, variance Var[𝑝𝑖 (𝑘)] = 𝜎2
𝑝𝑖
, and E[𝑝𝑖 (𝑘)𝑝 𝑗 (𝑘)] = 0∀𝑖, 𝑗 .

A common notion of stability for stochastic systems like the one in (4.6) is mean-square
stability:

Definition 1 ([24, p. 131]). Let𝑍 (𝑘) := E[𝑧 (𝑘)𝑧T(𝑘)] denote the state correlation matrix.
The system in (4.6) is mean-square stable (MSS) if lim𝑘→∞ 𝑍 (𝑘) = 0 for any initial 𝑧 (0).

That is, a system is called MSS if the state correlation vanishes asymptotically for any
intial state. MSS implies, for example, that 𝑧 (𝑘) → 0 almost surely as 𝑘 → ∞ [24,
p. 131].

In control theory, linear matrix inequalities (LMIs) are often used as computational
tools to check for system properties such as stability (see [24] for an introduction and
details). For MSS, we employ the following LMI stability result:

Lemma 3 ([24, p. 131]). System (4.6) is MSS if, and only if, there exists a positive definite
matrix 𝑃 > 0 such that

�̃�
T
0𝑃�̃�0 − 𝑃 +

∑︁𝑁

𝑖=1
𝜎2
𝑝𝑖
�̃�

T
𝑖 𝑃�̃�𝑖 < 0. (4.7)

We now apply this result to the system and controller from Section 4.5.1 and Sec-
tion 4.5.2. The closed-loop dynamics are given by (4.2)–(4.5), which we rewrite as an
augmented system

⎛⎜⎜⎜⎜⎝
𝑥 (𝑘 + 1)
�̂� (𝑘 + 1)
𝑢 (𝑘 + 1)
�̂� (𝑘 + 1)

⎞⎟⎟⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞
𝑧 (𝑘+1)

=

⎛⎜⎜⎜⎜⎝
𝐴 0 𝐵 0
\𝐴 (1 − \)𝐴 0 𝐵

0 𝜙𝐹𝐴 (1 − 𝜙)𝐼 𝜙𝐹𝐵

0 𝐹𝐴 0 𝐹𝐵

⎞⎟⎟⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
�̃�(𝑘)

⎛⎜⎜⎜⎜⎝
𝑥 (𝑘)
�̂� (𝑘)
𝑢 (𝑘)
�̂� (𝑘)

⎞⎟⎟⎟⎟⎠⏞ˉ⏟⏟ˉ⏞
𝑧 (𝑘)

. (4.8)

The system has the form of (4.6); the transition matrix depends on \ and 𝜙 , and thus on
time (omitted for simplicity). We can thus apply Lemma 3 to obtain our main stability
result, whose proof is given in Appendix 4.A.1.

88 Chapter 4. Feedback Control Goes Wireless

Theorem 3. The system (4.8) is MSS if, and only if, there exists a 𝑃 > 0 such that (4.7)
holds with

�̃�0 =

(︄
𝐴 0 𝐵 0
`\𝐴 (1−`\)𝐴 0 𝐵

0 `𝜙𝐹𝐴 (1−`𝜙)𝐼 `𝜙𝐹𝐵
0 𝐹𝐴 0 𝐹𝐵

)︄
, �̃�1 =

(︃ 0 0 0 0
−`\𝐴 `\𝐴 0 0

0 0 0 0
0 0 0 0

)︃
,

�̃�2 =

(︃ 0 0 0 0
0 0 0 0
0 −`𝜙𝐹𝐴 `𝜙 𝐼 −`𝜙𝐹𝐵
0 0 0 0

)︃
, 𝜎2

𝑝1 =
1/̀ \ − 1, 𝜎2

𝑝2 =
1/̀ 𝜙 − 1.

Using Theorem 3, we can analyze stability for any concrete physical system (4.2), a
state-feedback controller 𝐹 , and probabilities `\ and `𝜙 . Searching for a 𝑃 > 0 that
satisfies the LMI in (4.7) can be done using efficient numerical tools based on convex
optimization (e.g., [90]). If such a 𝑃 is found, we have the stability guarantee (G4).

The stability analysis can be extended to account for process and measurement noise so
that MSS then implies bounded 𝑍 (𝑘) (see [24, p. 138]). Moreover, other combinations
of end-to-end delay𝑇𝐷 and update interval𝑇𝑈 are possible, including𝑇𝐷 = 𝑛𝑇𝑈 (𝑛 ∈ N).
Also the sensor-to-controller and controller-to-actuator delays may be different.

4.5.4 Multi-Agent Synchronization

In distributed control architectures, different controllers have access to different mea-
surements and inputs, and thus, in general, different information. This is the core
reason for why such architectures are more challenging than centralized ones [58, 105].
Which information a controller has access to depends on the traffic pattern and topol-
ogy of the network. For instance, an agent may only be able to communicate with its
nearest neighbor via point-to-point communication, or with other agents in a certain
range. Property P3 of the wireless embedded system in Section 4.4 offers a key advan-
tage compared to these structures because every agent in the network has access to
all information (except for rare message losses). We can thus carry out a centralized
design, but implement the resulting controllers in a distributed fashion (cf. Figure 4.5,
right). Such schemes have been used before for wired-bus networks (e.g., in [171]).

Here, we present synchronization of multiple physical systems as an example of how
distributed control tasks can easily be achieved with the proposed wireless control
system (G6). We assume multiple physical processes as in (4.2), but with possibly
different dynamics parameters (𝐴𝑖 , 𝐵𝑖 , . . .). We understand synchronization in this
setting as the goal of having the system state of different agents evolve together as
close as possible. That is, we want to keep the error 𝑥𝑖 (𝑘) − 𝑥 𝑗 (𝑘) between the states
of systems 𝑖 and 𝑗 small. Instead of synchronizing the whole state vector, also a subset
of all states can be considered. Synchronization of multi-agent systems is a common
problem and also known as consensus or coordination [106].

We demonstrate feasibility of synchronization with multiple systems in Section 4.6.3.
The synchronizing controller is based on an LQR [7]; details of the concrete design are
given in Appendix 4.A.3.

4.6. Experimental Evaluation 89

Figure 4.6: Layout of CPS testbed consisting of 20 DPP nodes that form a three-hop low-
power wireless network and five cart-pole systems (two real ones attached to nodes 1 and 2,

three simulated ones at nodes 9, 14, and 15).

4.6 Experimental Evaluation

This section uses measurements from a CPS testbed (see Figure 4.6) consisting of 20
wireless embedded devices (forming a three-hop network) and several cart-pole systems
to evaluate the performance of the proposed wireless CPS design. Our experiments
reveal the following key findings:

• We can safely stabilize two inverted pendulums via two remote controllers across
the three-hop low-power wireless network.

• Using the same CPS design with a different control logic, we can reliably syn-
chronize the movement of five cart-poles thanks to the support for arbitrary
traffic patterns.

• Our system can stabilize an inverted pendulum at update intervals of 20–50 ms.
Increasing the update interval decreases the control performance, but leads to
significant energy savings on the wireless communication side.

• Our system is highly robust to message loss. Specifically, it can stabilize an
inverted pendulum at an update interval of 20 ms despite 75 % i.i.d. Bernoulli
losses and in situations with bursts of 40 consecutively lost messages.

• The measured jitter on the update interval and the end-to-end delay is less than
±25 µs, which validates our analysis of the theoretical worst-case jitter of ±50 µs
from Section 4.4.4.

90 Chapter 4. Feedback Control Goes Wireless

Cart
Pole

0-5-10-15-20-25 5 10 15 20 25

Track

Cart Position 𝑠 [cm]

Pole Angle \ [◦]

Figure 4.7: Schematic of a cart-pole system used in our testbed as physical systems. By
controlling the force applied to the cart, the pole can be stabilized in the upright position

around \ = 0◦.

4.6.1 Cyber-Physical Systems Testbed

Realistic CPS testbeds are essential for the validation and evaluation of CPS solu-
tions [15, 101]. We developed the wireless CPS testbed depicted in Figure 4.6. It
consists of 20 DPP nodes, two real physical systems (A and B), and three simulated
physical systems (C, D, and E). The testbed is deployed in an office building and ex-
tends across an area of 15 m by 20 m. All nodes transmit at 10 dBm, which results in a
network diameter of three hops. The wireless signals need to penetrate various types
of walls, from glass to reinforced concrete, and are exposed to different sources of
interference from other electronics and human activity.

We use cart-pole systems as physical systems. As shown in Figure 4.7, a cart-pole
system consists of a cart that can move horizontally on a track and a pole attached to
it via a revolute joint. The cart is equipped with a DC motor that can be controlled
by applying a voltage to influence the speed and the direction of the cart. Moving
the cart exerts a force on the pole and thus influences the pole angle \ . This way,
the pole can be stabilized in an upright position around \ = 0◦, which represents an
unstable equilibrium and is called the inverted pendulum. The inverted pendulum has
fast dynamics, which are typical of real-world mechanical systems [23], and requires
feedback with update intervals of tens of milliseconds.

For small deviations from the equilibrium (i.e., sin(\) ≈ \), the inverted pendulum can
be well approximated by an LTI system. The state 𝑥 (𝑘) of the system consists of four
variables. Two of them, the pole angle \ (𝑘) and the cart position 𝑠 (𝑘), are measured by
angle sensors. Their derivatives, the angular velocity \̇ (𝑘) and the cart velocity 𝑠 (𝑘),
are estimated using finite differences and low-pass filtering. The voltage applied to the
motor is the control input 𝑢 (𝑘). In this way, the APs of nodes 1 and 2 interact with
the two real pendulums A and B, while the APs of nodes 9, 14, and 15 run simulation
models of the inverted pendulum.

The cart-pole system has a few constraints. Control inputs are capped at ±10 V. The
track has a usable length of ±25 cm from the center (see Figure 4.7). Surpassing the
track limits immediately ends an experiment. At the beginning of an experiment, we

4.6. Experimental Evaluation 91

Figure 4.8: Cart position 𝑠 , pole angle \ , and control input 𝑢 of one cart-pole system when
concurrently stabilizing two cart-pole systems over amulti-hop network at an update interval
of 45 ms. The cart position and the pole angle always stay within safe regimes, and less than

half of the possible control input is needed.

move the carts to the center and the poles in the upright position; then the controller
takes over. Appendix 4.A.2 and Appendix 4.A.3 detail the implementation of the
controllers for multi-hop stabilization and multi-hop synchronization, following the
design outlined in Section 4.5.2 and Section 4.5.4.

Using this CPS testbed, we measure the control performance in terms of pole angle,
cart position, and control input. In addition, we measure the radio duty cycle at each
node in software and record messages that are lost over the wireless network.

4.6.2 Multi-Hop Stabilization

In our first experiment, we want to answer the main question of this work and in-
vestigate the feasibility of fast feedback control over low-power wireless multi-hop
networks.

Setup. We use two controllers running on nodes 14 and 15 to stabilize the two real
pendulums A and B at \ = 0◦ and 𝑠 = 0 cm. Hence, there are two independent control
loops sharing the same wireless network, and it takes in total six hops to close each
loop. We configure the wireless embedded system and the controllers for an update
interval of 𝑇𝑈 = 45 ms. As per property P2 and confirmed by our measurements
discussed below, we expect a message delivery rate of at least 99.9 %. With this we have
`\ = `𝜙 = 0.999, and we can prove stability of the overall system using Theorem 3.

Results. The experimental results confirm the theoretical analysis: We are able to
safely stabilize both pendulums over the three-hop wireless network, even while
carrying around the controller because our design is independent of the network
topology 2 (see Section 4.4.1). Figure 4.8 shows a characteristic 30 s trace of one of
the pendulums. Cart position, pole angle, and control input oscillate, but always stay
within safe regimes. For example, the cart never comes close to either end of the track
and less than half of the possible control input is needed to stabilize the pendulum.
Not a single message was lost in this experiment, which demonstrates the reliability of
our wireless embedded system design.

2A video of this experiment can be found at https://youtu.be/19xPHjnobkY.

https://youtu.be/19xPHjnobkY

92 Chapter 4. Feedback Control Goes Wireless

Figure 4.9: Distribution of the jitter on the end-to-end delay 𝑇𝐷 ; results for the update
interval 𝑇𝑈 are similar. The measurements are within the theoretical worst-case bounds

determined in Section 4.4.4.

During the same experiment, we also use a logic analyzer to continuously measure the
update interval 𝑇𝑈 and the end-to-end delay 𝑇𝐷 (see Figure 4.4). Figure 4.9 shows the
measured jitter on 𝑇𝐷 ; the results for 𝑇𝑈 look very similar. We see that the empirical
results are well within the theoretical worst-case bounds, which validates our analysis
in Section 4.4.4 and assumptions in Section 4.5.

4.6.3 Multi-Hop Synchronization

We now apply the samewireless CPS design to a distributed control task to demonstrate
its flexibility and versatility.

Setup. We use the two real pendulums A and B and the three simulated pendulums C,
D, and E. The goal is to synchronize the cart positions of the five pendulums over the
wireless multi-hop network, while each pendulum is stabilized by a local control loop.
This scenario is similar to drone swarm coordination, where each drone stabilizes its
flight locally, but exchanges its position with all other drones to keep a desired swarm
formation [140]. In our experiment, stabilization runs with 𝑇𝑈 = 10 ms, and nodes 1, 2,
9, 14, and 15 exchange their current cart positions every 50 ms.

Results. The left plot in Figure 4.10 shows the cart positions over time without
synchronization. We see that the carts of the real pendulums move with different
amplitude, phase, and frequency due to slight differences in their physics and imperfect
measurements. The simulated pendulums, instead, are perfectly balanced and behave
deterministically as they all start in the same initial state.

In the middle plot of Figure 4.10, we can observe the behavior of the pendulums when
they synchronize their cart positions over the wireless multi-hop network. Now, all
five carts move in concert. The movements are not perfectly aligned because, besides
the synchronization, each cart also needs to locally stabilize its pole at \ = 0◦ and
𝑠 = 0 cm. Since no message is lost during the experiment, the simulated pendulums all
receive the same state information and, therefore, show identical behavior.

This effect can also be seen in our third experiment, shown in the bottom plot of
Figure 4.10, where we hold pendulum A for some time at 𝑠 = −20 cm. The other
pendulums now have two conflicting control goals: stabilization at 𝑠 = 0 cm and \ = 0◦,
as well as synchronization while one pendulum is fixed at about 𝑠 = −20 cm. As a result,

4.6. Experimental Evaluation 93

Figure 4.10: Cart positions of five cart-pole systems stabilized locally at an update interval
of 10 ms and synchronizing their cart positions (middle and bottom plot) over the low-power
wireless multi-hop network at an update interval of 50 ms. With synchronization enabled, all
five carts move in concert and even try to mimic the temporary disturbance of pendulum A,

shown in the bottom plot.

they all move toward this position and oscillate between 𝑠 = 0 and 𝑠 = −20 cm. Clearly,
this experiment demonstrates that the cart-pole systems influence each other, which is
enabled by the many-to-all communication over the wireless multi-hop network.

4.6.4 Impact of Update Interval

The next experiment takes a look at the impact of different update intervals (and hence
end-to-end delays) on control performance.

Setup. To minimize effects that we cannot control, such as external interference, we
use two nodes close to each other: pendulum A (node 1) is stabilized via a remote
controller running on node 2. We test different update intervals in consecutive runs.
Starting with the smallest update interval of 20 ms that the wireless embedded system
can support in this scenario, we increase the update interval in steps of 10 ms until
stabilization is no longer possible.

Results. Figure 4.11 shows control performance and radio duty cycle for different
update intervals based on more than 12,500 data points. We see that a longer update
interval causes larger pole angles and more movement of the cart. Indeed, the total
distance the cart moves during an experiment increases from 3.40 m for 20 ms to 9.78 m
for 50 ms. This is consistent with the wider distribution of the control input for longer
update intervals. At the same time, the radio duty cycle decreases from 40 % for 20 ms
to 15 % for 50 ms. Hence, there is a trade-off between control performance and energy
efficiency, which may be exploited based on the application requirements.

94 Chapter 4. Feedback Control Goes Wireless

(a) Pole angle. (b) Cart position.

(c) Control input. (d) Radio duty cycle.

Figure 4.11: Distribution of control performance metrics and average radio duty cycle when
stabilizing an inverted pendulum over low-power wireless at different update intervals. A
larger update interval leads to larger pole angles and more movement of the cart, but also

reduces the average radio duty cycle.

4.6.5 Resilience to Message Loss

Finally, we evaluate how control performance is affected by message loss, which is a
well-known phenomenon in wireless networks [163].

Setup. We use again the two-node setup from before, but now we fix the update
interval at 20 ms. We let both nodes intentionally drop messages in two different ways.
In a first experiment, the two nodes independently drop a received message according
to a Bernoulli process with given failure probability. Specifically, we test three different
failure probabilities in different runs: 15 %, 45 %, and 75 %. In a second experiment,
the two nodes drop a certain number of consecutive messages every 10 s, namely
between 10 and 40 messages in different runs. This artificially violates property P2 of
the wireless embedded system, yet allows us to evaluate the robustness of our control
design to unexpected conditions.

Results. Figure 4.12a and Figure 4.12b show the distributions of the pole angle and
the control input for varying i.i.d. Bernoulli message loss rates. We see that the control
performance decreases for higher loss rates, but the pendulum can be stabilized even
at a loss rate of 75 %. One reason for this is the short update interval. For example,
losing 50 % of the messages at an update interval of 20 ms is comparable to an update
interval of 40 ms without any losses, which is enough to stabilize the pendulums as
we know from the previous experiment.

4.A. Control Details 95

(a) Pole angle. (b) Control input.

(c) Pole angle over time for bursts of 40 consecutive losses every 10 s (shaded areas).
The right plot magnifies the second burst.

Figure 4.12: Control performance and input when stabilizing one pendulum over wireless
under artificially injected message loss, for i.i.d. Bernoulli losses (top), and for longer bursts
of multiple consecutive losses (bottom). Depending on the update interval, the pendulum can
be stabilized despite significant and bursty message loss, albeit with reduced performance.

Figure 4.12c plots the pole angle as a function of time for a burst length of 40 consecu-
tively lost messages, with the right plot zooming into the time around the second burst
phase. No control inputs are received during a burst, and depending on the state of
the pendulum and the control input right before a burst, the impact of a burst may be
very different as visible in Figure 4.12c. The magnified plot shows that the pole angle
diverges from around 0◦ with increasing speed. As soon as the burst ends, the control
input rises to its maximum value of 10 V in order to bring the pendulum back to a
non-critical state, which usually takes 1–2 s. These results show that while property
P2 of our wireless embedded system design significantly simplifies control design
and analysis, the overall system remains stable even if this property is dramatically
violated, which is nevertheless very unlikely as demonstrated in prior work [79, 194].

4.A Control Details

In this appendix, we provide further details of the control design and analysis. We
present the proof of Theorem 3, implementation details of the controllers we use
for the multi-hop stabilization experiments, and outline the approach to multi-agent
synchronization.

96 Chapter 4. Feedback Control Goes Wireless

4.A.1 Proof of Theorem 3

For clarity, we reintroduce time index 𝑘 for \ and 𝜙 . Following a similar approach
as in [148], we transform \ (𝑘) as \ (𝑘) = `\ (1 − 𝛿\ (𝑘)) with the new binary random
variable 𝛿\ (𝑘) ∈ {1, 1 − 1/̀ \ } with P[𝛿\ (𝑘) = 1] = 1 − `\ and P[𝛿\ (𝑘) = 1 − 1/̀ \] = `\ ;
and analogously for 𝜙 (𝑘) and 𝛿𝜙 (𝑘). We thus have that 𝛿\ (𝑘) is i.i.d. because \ is
i.i.d. with E[𝛿\ (𝑘)] = 0 and Var[𝛿\ (𝑘)] = 𝜎2

𝑝1 , and similarly for 𝛿𝜙 (𝑘). Employing this
transformation, �̃�(𝑘) in (4.8) is rewritten as �̃�(𝑘) = �̃�0 +

∑︁2
𝑖=1 �̃�𝑖𝑝𝑖 (𝑘) with 𝑝1(𝑘) =

𝛿\ (𝑘), 𝑝2(𝑘) = 𝛿𝜙 (𝑘), and �̃�𝑖 as stated in Theorem 3. Thus, all properties of (4.6) are
satisfied, and Lemma 3 yields the result.

4.A.2 Stabilizing Controllers

For the stability experiments of Section 4.6.2, we employ the design outlined in Sec-
tion 4.5.2. The system matrices 𝐴 and 𝐵 of the cart-pole system that are used for
predictions and nominal controller design are given by the manufacturer in [141]. The
nominal controller is designed for an update interval 𝑇𝑈 = 40 ms via pole placement,
and we choose 𝐹 such that we get closed-loop eigenvalues at 0.8, 0.85, and 0.9 (twice).
In experiments with update intervals different from 40 ms, we adjust the controller to
achieve similar closed-loop behavior.

To derive more accurate estimates of the velocities, filtering can be done at higher
update intervals than communication occurs. For the experiments in Section 4.6,
estimation and filtering occur at intervals between 10 ms and 20 ms, depending on the
experiment.

4.A.3 Synchronization

For simplicity, we consider synchronization of two agents in the following, but the
approach directly extends to more than two, as we show in the experiments in Sec-
tion 4.6.3.

We consider the architecture in Figure 4.5, where each physical system is associated
with a local controller that receives local observations directly, and observations from
other agents over the network. We present an approach based on an optimal LQR [7]
to design the synchronizing controllers. We choose the quadratic cost function

𝐽 = lim
𝐾→∞

1
𝐾
E
[︂ 𝐾−1∑︁
𝑘=0

2∑︁
𝑖=1

(︂
𝑥T
𝑖 (𝑘)𝑄𝑖𝑥𝑖 (𝑘) + 𝑢T

𝑖 (𝑘)𝑅𝑖𝑢𝑖 (𝑘)
)︂

+ (𝑥1(𝑘) − 𝑥2(𝑘))T𝑄sync(𝑥1(𝑘) − 𝑥2(𝑘))
]︂

(4.9)

which expresses our objective of keeping 𝑥1(𝑘) − 𝑥2(𝑘) small (through the weight
𝑄sync > 0), next to usual penalties on states (𝑄𝑖 > 0) and control inputs (𝑅𝑖 > 0). Using
augmented state �̃� (𝑘) = (𝑥1(𝑘), 𝑥2(𝑘))T and input �̃� (𝑘) = (𝑢1(𝑘), 𝑢2(𝑘))T, the term in

4.A. Control Details 97

the summation over 𝑘 can be rewritten as

�̃�T(𝑘)
(︄
𝑄1 +𝑄sync −𝑄sync

−𝑄sync 𝑄2 +𝑄sync

)︄
�̃� (𝑘) + �̃�T(𝑘)

(︄
𝑅1 0
0 𝑅2

)︄
�̃� (𝑘) .

Thus, the problem is in standard LQR form and can be solved with standard tools
[7]. The optimal stabilizing controller that minimizes (4.9) has the structure 𝑢1(𝑘) =
𝐹11𝑥1(𝑘) + 𝐹12𝑥2(𝑘) and 𝑢2(𝑘) = 𝐹21𝑥1(𝑘) + 𝐹22𝑥2(𝑘); that is, agent 1 (𝑢1(𝑘)) requires
state information from agent 2 (𝑥2(𝑘)), and vice versa. Because of many-to-all commu-
nication, the wireless embedded system directly supports this (as well as any other
possible) controller structure (P3).

As the controller now runs on the node that is co-located with the physical process,
local measurements and inputs are not sent over the wireless network and the local
sampling time can be shorter than the update interval of the network over which
the states of other agents are received. While the analysis in Section 4.5.3 can be
generalized to the synchronization setting, a formal stability proof is beyond the scope
of this work. In general, stability is less critical here because of shorter update intervals
in the local feedback loop.

For the synchronization experiments in Section 4.6.3, we choose 𝑄𝑖 in (4.9) for all
pendulums as suggested by the manufacturer in [141] and set 𝑅𝑖 = 0.1. As we here
care to synchronize the cart positions, we set the first diagonal entry of 𝑄sync to 5 and
all others to 0.

98 Chapter 4. Feedback Control Goes Wireless

Postscript

We have presented a CPS design that enables, for the first time, fast feedback control
over low-power wireless multi-hop networks with update intervals of 20–50 ms. By
contrast, existing feedback control approaches are either limited to small single-hop
networks or systems with slow dynamics, where update intervals of several seconds
significantly relax timing and reliability requirements. In our co-design approach, we
tame network imperfections to the extent possible, take the resulting properties of the
communication network into account in the control design, and carefully coordinate
all run-time tasks to meet real-time demands. Thus, we can formally prove closed-loop
stability of the entire CPS. We validate our findings with experiments on a novel CPS
testbed featuring multiple physical systems. By demonstrating how feedback loops
can be closed quickly and reliably over large distances, we are taking an important
step toward realizing the CPS vision.

Furthermore, we have extended the adaptivity of our design in a follow-up work
by introducing so-called mode changes. Because CPS potentially have to perform
various tasks at run-time, they may switch between different modes of operation, for
example, to realize a highly individual manufacturing process. Our extended system
can dynamically change between different application tasks executing on spatially
distributed embedded devices, while closed-loop stability is provably guaranteed even
across mode changes. The corresponding publication is not part of this thesis:

Dominik Baumann★, Fabian Mager★, Romain Jacob, Lothar Thiele, Marco Zimmerling,
and Sebastian Trimpe. “Fast Feedback Control over Multi-hop Wireless Networks with
Mode Changes and Stability Guarantees.” ACM Transactions on Cyber-Physical Systems,
4(2):18:1–18:32, 2019. doi:10.1145/3361846
★ Both authors contributed equally to this work.

In addition to the laboratory experiments, we successfully demonstrated our system
and testbed in other locations, including a public demonstration at the CPS-IoT Week
2019 in Montreal:

Fabian Mager★, Dominik Baumann★, Romain Jacob, Lothar Thiele, Marco Zimmerling,
and Sebastian Trimpe. “Demo Abstract: Fast Feedback Control and Coordination with
Mode Changes for Wireless Cyber-Physical Systems.” In International Conference on
Information Processing in Sensor Networks (IPSN), pages 340–341, Montreal, Quebec,
Canada, 2019. doi:10.1145/3302506.3312483 (Best demo award)

★ Both authors contributed equally to this work.

https://doi.org/10.1145/3361846
https://doi.org/10.1145/3302506.3312483

5
Control-Guided Communication: Efficient

Resource Arbitration and Allocation in

Multi-Hop Wireless Control Systems

Preface

The CPS we have presented in the previous chapter uses a classical time-triggered
control design, where each agent transmits information periodically; thus, the band-
width demands increase linearly with the number of agents. It is expected that the
number of agents in emerging CPS applications will increase significantly, making the
limited communication bandwidth a highly contested resource. Modern ETC and STC
designs reduce the generated traffic by transmitting data only when needed, which
enables considerable energy savings and better scalability. However, no prior work
can transfer these benefits to multi-hop networks and enable freed-up bandwidth to
be reallocated to other agents because communication resources must be allocated
ahead of time.

In this chapter, we propose control-guided communication, a novel co-design that
integrates distributed STC and wireless multi-hop communication to close this gap.
The core idea is that the control system predicts transmission demands ahead of time
and informs the communication system such that communication resources can be
allocated accordingly. We validate our approach on a CPS testbed and demonstrate
how communication resources can be dynamically saved or reallocated to other traffic.
Thus, we achieve a real end-to-end benefit, including control and communication,
which enables more efficient and adaptive wireless CPS.

100 Chapter 5. Control-Guided Communication

Table 5.1: Qualitative comparison of prior and our work on integrating STC with wireless
communication, evaluated through real-world experiments.

Work Fast update Multi- Energy Reallo- Distributed
intervals hop savings cation implementation

[10] ✗ ✗ ✓ ✓ ✗

[9] ✗ ✗ ✓ ✓ ✗

[110] ✗ ✓ ✓ ✗ ✗

[151] ✓ ✗ ✓ ✗ ✗

[152] ✓ ✗ ✓ ✗ ✗

This ✓ ✓ ✓ ✓ ✓

5.1 Introduction

The unparalleled flexibility and cost efficiency when closing feedback loops over
wireless networks enables many CPS applications. For instance, in a smart factory,
plants are controlled via remote controllers, mobile robots interact with the plants,
and distributed sensors provide additional measurements. Another example is drones
regularly exchanging data to fly in formation. These and other applications demand
wireless multi-hop communication to cover large distances and fast update intervals of
tens of milliseconds to keep up with the dynamics of the systems to be controlled [4].

Challenges. Fast feedback control over wireless multi-hop networks is challenging
owing to the inherent imperfections of wireless networks, such as transmission delays
and message loss. Moreover, the limited network bandwidth can lead to congestion
when many agents need to communicate at the same time, and wireless radios draw
considerable power, which is a major concern for embedded sensors and mobile devices
that must be untethered and thus powered by batteries. For these reasons, adaptive
schemes are needed where agents use the network only when necessary to save energy,
and available resources are reallocated at run-time to serve those in need.

To use the limited bandwidth and energy more efficiently, ETC and STC methods have
been developed [63, 124]. Unlike periodic control, in ETC and STC the decision whether
to communicate or not is based on events, such as an error exceeding a threshold. ETC
instantaneously decides whether to communicate, leaving no time to save energy or
reallocate bandwidth in case of a negative triggering decision. STC, instead, decides
ahead of time about the next triggering instant. However, to utilize freed resources
(e.g., to serve traffic from additional remote sensors), an integration of STC designs and
wireless communication protocols is required. Moreover, such co-design approaches
must be evaluated on real CPS testbeds to establish trust in feedback control over
wireless [101]. While a large body of work on STC exists (see [63, 121, 124, 174, 178]
and the references therein), the integration of STC designs with wireless protocols
including an experimental evaluation has rarely been considered. The few exceptions
are listed in Table 5.1 and discussed next.

5.1. Introduction 101

Prior work. Existing approaches integrating STC and wireless communication tar-
get remote control, for example, of a double-tank process [9, 10], a simulated load-
positioning system [110], or a mobile robot [151]. Coordination in multi-robot systems
has been studied in [152], but the control commands are computed by a central entity,
so the implementation is not distributed. All works show that STC allows for solving
the control task with less communication than periodic control, enabling significant
energy savings. However, reallocation of freed resources has only been demonstrated
in [9, 10], for single-hop networks and update intervals of a few seconds. In fact, STC
over a wireless multi-hop network has only been shown in [110], with an update
interval of 1 s.

In summary, no solution exists that provides energy savings and reallocation of freed
resources for the control of systems at fast update intervals over multi-hop networks.
Moreover, no work has shown a distributed implementation of a STC law, where
agents locally use information obtained over the network to solve a common control
task. However, a complete solution is needed to enable novel applications, such as
collaborative multi-robot swarms for future smart production systems.

Contribution. We present a co-design of control and communication for multi-hop
wireless networks that fills this gap. Our approach arbitrates the available communica-
tion bandwidth among different types of traffic from any entity in the network, while
simultaneously shutting down resources completely to save energy when neither the
control system nor any other entity needs the full bandwidth. We evaluate the ap-
proach on a three-hop CPS testbed with multiple physical systems [15], demonstrating
improved resource efficiency at high control performance for update intervals below
100 ms.

At the heart of our solution is the novel concept of control-guided communication:
The control system informs the communication system at run-time about its resource
requirements, and the communication system leverages this information to dynam-
ically allocate or shut down resources. Concretely, we consider the setup depicted
in Figure 5.1. Each agent uses STC to decide at the current communication instant
when it will communicate next. The agent piggybacks the decision of its self trigger
onto the messages it sends. The network manager uses this information as input
when dynamically computing the communication schedule at run-time. For example,
when some agents do not need to communicate, their share of the bandwidth can be
reallocated to serve other traffic (e.g., from remote sensors) or can be shut down to
conserve energy. The concrete scheduling policy is an exchangeable component of
our design and can be adapted to the application requirements.

In essence, we make the following two main contributions:

• We propose control-guided communication, a tight integration of STC and
wireless multi-hop communication in which the control system informs the
network at run-time about future communication demands to enable both energy
savings and reallocation of network bandwidth.

102 Chapter 5. Control-Guided Communication

Figure 5.1: We consider multiple physical systems connected over a wireless multi-hop
network. Each system is associated with a self trigger that computes at the current communi-
cation instant when it needs to communicate the next time. This information is piggybacked
onto the message it sends. The network manager uses this information to compute a com-
munication schedule respecting these demands and, if possible, saves energy or reallocates

bandwidth to additional systems or data sources.

• Using experiments on a real CPS testbed with five inverted pendulums, we are
the first to demonstrate distributed STC over wireless multi-hop networks with
update intervals below 100 ms, while showing energy savings of up to 87 %
compared to the periodic baseline.

5.2 Problem Setting

We consider 𝑁 physical systems connected over a wireless multi-hop network, as
shown in Figure 5.1. Each agent is modeled as a stochastic, linear, and time-invariant
system

𝑥𝑖 (𝑘 + 1) = 𝐴𝑖𝑥𝑖 (𝑘) + 𝐵𝑖𝑢𝑖 (𝑘) + 𝑣𝑖 (𝑘), (5.1)

with state 𝑥𝑖 (𝑘) ∈ R𝑛 , input 𝑢𝑖 (𝑘) ∈ R𝑚 , and 𝑣𝑖 (𝑘) ∈ R𝑛 a Gaussian random variable
with zero mean and variance Σ𝑖 , capturing process noise. We assume each agent has a
local controller that receives local observations directly, but also needs information
from other agents for distributed control.

There are various methods to design distributed controllers (see, e.g., [105]). In this
work, we adopt an approach based on the LQR [7]. Using augmented states �̃� (𝑘) =
(𝑥1(𝑘), . . . , 𝑥N(𝑘))ᵀ and inputs �̃� (𝑘) = (𝑢1(𝑘), . . . , 𝑢N(𝑘))ᵀ, we define the cost function

𝐽 = lim
𝑘→∞

1
𝐾
E[�̃�ᵀ(𝑘)𝑄�̃� (𝑘) + �̃�ᵀ(𝑘)𝑅�̃� (𝑘)], (5.2)

with positive definite weight matrices 𝑄 and 𝑅. The optimal stabilizing controller that
minimizes (5.2) is of the form 𝑢𝑖 (𝑘) =

∑︁
𝑗 𝐹𝑖 𝑗𝑥 𝑗 (𝑘), where 𝐹𝑖 𝑗 denotes entry (𝑖, 𝑗) of the

feedback matrix 𝐹 . That is, to implement this controller, each agent needs information
from all other agents, which is sent over the wireless multi-hop network. To provide
high-performance control while efficiently using limited network bandwidth and
energy resources, the system must meet several requirements:

5.3. Co-Design Approach 103

• For coordination, the agents need to exchange data; in particular, for optimal
control according to (5.2), all agents need to communicate with one another
(all-to-all).

• Wireless multi-hop communication must be reliable and fast to support feedback
control of physical systems with fast dynamics; we target mechanical systems
requiring update intervals on the order of tens of milliseconds [4].

• The network must arbitrate among multiple types of data traffic as determined
by the communication schedule, while always giving highest priority to control
traffic.

• If some fraction of the bandwidth is not allocated to any entity, this resource
should be shut down to save energy.

5.3 Co-Design Approach

The main goal of this work is to facilitate high-performance distributed control across
multi-hop wireless networks with highly adaptive resource arbitration and allocation
to support multiple traffic types and save unused resources. Prior work failed to reach
this goal because the many imperfections of wireless systems, such as time-varying
end-to-end delays and limited throughput, complicate the control design and make it
difficult to quickly coordinate the system-wide operation and resource usage based on
the current control-traffic demands.

To tackle this issue, we propose a novel co-design approach that integrates the control
and communication systems in two ways. First, the design of the communication
system tames network imperfections as much as possible, and the control system
accounts for the emerging key properties and remaining imperfections. Second, during
operation, the control system reasons about its future communication demands and
informs the communication system accordingly. The communication system, on the
other hand, adapts to these demands by arbitrating the available bandwidth among
different types of traffic and by shutting down resources completely to save energy
when neither the control system nor any other participant needs the full bandwidth.
We call this concept control-guided communication, which we detail in the following
two sections.

In addition, our wireless communication system provides fast and reliable many-to-all
communication among any set of agents, even when the agents are mobile and thereby
causing the network topology to change continuously. This feature is a key difference
to traditional wireless communication systems, such as WirelessHART, and makes our
co-design approach directly applicable to solve various kinds of distributed control
problems that may be stated in the form of a cost function (5.2).

104 Chapter 5. Control-Guided Communication

Figure 5.2: Time-triggered operation of the low-power wireless multi-hop protocol. Com-
munication occurs in rounds with a constant period 𝑇 . Each round consists of a schedule
slot and up to 𝐾 data slots. The schedule slot serves to inform all nodes about subsequent
data slots in the round, including the number and allocation of control or other messages.

The network manager computes the next schedule after the last data slot.

5.4 Wireless Communication System Design

We first describe the design of the wireless communication system, and detail the
control design based on the emerging properties in the next section. The wireless
system builds on the periodic design presented in Chapter 4 and consists of three
elements, where 2) is significantly modified and 3) is a new component:

1) a hardware platform enabling a predictable and efficient execution of all control
tasks and message transfers;

2) a multi-hop wireless protocol that provides many-to-all communication with
minimal, bounded end-to-end delay;

3) an online scheduler that dynamically assigns bandwidth to each agent based on
its communication requirements.

Hardware platform. We use a DPP where sensing, actuation, and control execute on
an AP (MSP432P401R, 32-bit, 48 MHz) and the wireless multi-hop protocol executes
on a CP (CC430F5147, 16-bit, 13 MHz). The processors communicate through the
Bolt interconnect [166], which provides bounded worst-case execution times for the
bidirectional exchange of messages between both processors. In this way, control and
communication can efficiently execute in parallel and never interfere with each other,
providing timing predictability.

Multi-hop wireless protocol. The CP of every DPP in the network runs a multi-hop
protocol, whose design is inspired by a new breed of protocols that exploit ST-based
flooding for highly reliable and efficient communication. As shown in Figure 5.2, using
our protocol, communication occurs in rounds of equal duration that repeat with a
constant period 𝑇 . Each round consists of a sequence of non-overlapping slots. In each
slot, one node is allowed to initiate a Glossy flood [48] to send a message to all other
nodes. Glossy achieves the theoretical minimum latency for flooding a message in a
multi-hop network using half-duplex radios, and provides a reliability above 99.9 %
in real-world scenarios [48, 49]. In fact, Glossy’s reliability can be pushed beyond
99.9999 % by letting nodes transmit more often during a flood, and it time-synchronizes
all nodes to within sub-microsecond accuracy at no additional cost [48].

5.5. Self-Triggered Control Design 105

Any node in the network can serve as the designated network manager that uses the
first slot in a round to flood the schedule. The schedule informs all other nodes about
the number of data slots in the round (up to 𝐾) and the allocation of nodes to these data
slots. The transmitted messages carry, for example, high-priority control information
from agents or lower-priority data from other nodes, such as measurements from
a remote sensor or information about a node’s health status (e.g., its battery’s state
of charge). When sending a message, a node also piggybacks information about its
future communication demands; if the network manager does not receive a message,
it assumes that the respective node needs to transmit in the next round. Based on all
demands, the network manager computes the schedule for the next round after the
last data slot.

Online scheduler. To this end, the network manager maintains a list of unserved
communication demands, and allocates up to 𝐾 nodes to the data slots in the next
round according to a scheduling policy. The scheduling policy can be adjusted to
meet different application requirements. As an illustrative example, we design in
this work a new policy that aims to strike a balance between resource efficiency and
accommodating lower-priority messages next to control traffic. Specifically, if there
are free data slots after assigning all nodes with pending control messages in the next
round, we allocate one of the free data slots to a node for sending some other message,
such as sensor or status information. The next node to send such message is chosen
in a round-robin fashion. Any other free slot is left empty. Since nodes have their
radios on only during allocated slots and off otherwise, this example policy illustrates
that our wireless communication system allows for both arbitrating bandwidth among
different traffic types and not allocating resources at all to save energy, as demonstrated
in Section 5.6.

Key properties. Our wireless system design provides highly reliable, efficient many-
to-all communication, system-wide time synchronization, and adapts at run-time
to the nodes’ communication demands. Due to the time synchronization, we can
schedule control and communication tasks such that the jitter on the update interval
and end-to-end delay is less than ±50 µs, as formally and experimentally validated
in Chapter 4.

5.5 Self-Triggered Control Design

We now detail the control design, first our approach to distributed control and then
our self-triggered design.

5.5.1 Distributed Control

The wireless communication system provides a constant update interval 𝑇 as the jitter
is negligible for the considered scenarios. We thus set one discrete time step in (5.1) to
𝑇 and data that is sent over the network is delayed by one time step. Moreover, the

106 Chapter 5. Control-Guided Communication

many-to-all communication scheme ensures that information can be received by all
agents in the network. This greatly facilitates control design as essentially arbitrary
information patterns can be implemented. For example, this allows for implementing
a (centralized) optimal controller in a distributed fashion as we show in this chapter.
Given the high reliability of the wireless embedded system, we assume that data that
are sent over the network are received by all agents.

As an example for distributed control, we consider synchronization of multiple agents
through an LQR design as in (5.2). For ease of presentation, we outline the approach
for the two-agent case, but it also extends to multiple agents as shown in Section 5.6.
We choose the quadratic cost function

𝐽 = lim
𝐾→∞

1
𝐾
E
[︂ 𝐾−1∑︁
𝑘=0

2∑︁
𝑖=1

(︂
𝑥T
𝑖 (𝑘)𝑄𝑖𝑥𝑖 (𝑘) + 𝑢T

𝑖 (𝑘)𝑅𝑖𝑢𝑖 (𝑘)
)︂

+ (𝑥1(𝑘) − 𝑥2(𝑘))T𝑄sync(𝑥1(𝑘) − 𝑥2(𝑘))
]︂
, (5.3)

that is, we penalize deviations between 𝑥1(𝑘) and 𝑥2(𝑘) through the positive definite
weight matrix 𝑄sync, as well as deviations from the equilibrium (𝑄𝑖 > 0) and high
control inputs (𝑅𝑖 > 0). Using augmented states as in (5.2), the term in the summation
over 𝑘 becomes

�̃�T(𝑘)
(︁𝑄1+𝑄sync −𝑄sync
−𝑄sync 𝑄2+𝑄sync

)︁
�̃� (𝑘) + �̃�T(𝑘)

(︁
𝑅1 0
0 𝑅2

)︁
�̃� (𝑘) .

As discussed in Section 5.2, solving the optimal control problem then leads to a feed-
back controller that has the form 𝑢1(𝑘) = 𝐹11𝑥1(𝑘) + 𝐹12𝑥2(𝑘), that is, agent 1 needs
information from agent 2. We account for this by letting agent 2 send𝑢12(𝑘) = 𝐹12𝑥2(𝑘)
over the network. Thus, agent 1’s control input consists of 𝑢11(𝑘) = 𝐹11𝑥1(𝑘), which
it can compute using its local observations, and 𝑢12(𝑘), which it receives over the
network. We can thus define the closed-loop matrix �̃�1 = 𝐴1 + 𝐵1𝐹11 and (5.1) then
reads as follows

𝑥1(𝑘 + 1) = �̃�1𝑥1(𝑘) + 𝐵1𝑢12(𝑘) + 𝑣1(𝑘) . (5.4)

5.5.2 Self-Triggered Approach

Different STC designs have been proposed and are conceivable to realize control-guided
communication. We use a design that exploits ideas from previous work on state
estimation [170]. Instead of sending states as in [170], we consider the communication
of control inputs. Specifically, rather than sending its entire state, agent 2 only sends
the input 𝑢12(𝑘) that is needed by agent 1. In case of no communication, agent 1 keeps
applying 𝑢12(𝑘ℓ), where 𝑘ℓ is the last time step at which the input 𝑢12(𝑘) was sent. We
trigger communication based on the error 𝑒12(𝑘) ≔ 𝑢12(𝑘) − 𝑢12(𝑘ℓ) as follows

𝛾2(𝑘) = 1 ⇐⇒ (𝑒12(𝑘))ᵀ𝑒12(𝑘) > 𝛿. (5.5)

5.5. Self-Triggered Control Design 107

Here, 𝛾2(𝑘) is a binary variable, denoting whether agent 2 communicates 𝑢12(𝑘)
(𝛾2(𝑘) = 1) or not (𝛾2(𝑘) = 0), while 𝛿 defines the designer’s trade-off between sav-
ing communication (large 𝛿) and keeping the error to a minimum (small 𝛿).

If we directly implement (5.5), agent 2 instantaneously decides on whether to transmit
𝑢12(𝑘) to agent 1. In case of a negative triggering decision, there is no possibility to
reallocate bandwidth and hence freed resources remain unused. To overcome this
problem, we use a self-triggered strategy. Whenever an agent communicates, it already
decides when to communicate next. To this end, we predict the evolution of the error
and look for the smallest𝑀 > 1 such that

E
[︁
(𝑒12(𝑘 +𝑀))ᵀ𝑒12(𝑘 +𝑀) |D2(𝑘)

]︁
> 𝛿 (5.6)

and set 𝛾 (𝑘 +𝑀 − 1) = 1. Here, D2(𝑘) describes the data agent 2 collected until time
step 𝑘 , that is, its local states 𝑥2 and the inputs 𝑢2 and 𝑢12 that it has applied and sent
so far, respectively. The rationale behind this triggering rule is as follows: Information
that is sent over the network is delayed by one discrete time step. The inequality
in (5.6) tells us that the error exceeds, in expectation, the threshold 𝛿 in𝑀 time steps.
We thus seek to communicate next in𝑀 − 1 time steps such that the new input arrives
in𝑀 time steps, which is exactly when we expect the error to exceed the threshold.

The exact computation of (5.6) is complicated by the fact that the input 𝑢21(𝑘) is not
available at all times at agent 2. To derive the triggering law, we assume𝑢21(𝑘) is known
and then comment on how we approximate it to yield a tractable implementation.
Based on this, we get the error distribution

𝑓 (𝑒12(𝑘 +𝑀) |D2(𝑘)) = N(𝑒12(𝑘 +𝑀 |𝑘), 𝑃2(𝑘 +𝑀 |𝑘)), (5.7)

with mean 𝑒12 and variance 𝑃2 given as

𝑒12(𝑘 +𝑀 |𝑘) =

𝐹12(�̃�
𝑀

2 𝑥2(𝑘) +
M∑︁
𝑖=0

�̃�
𝑀−𝑖
2 𝐵2𝑢21(𝑘 + 𝑖)) − 𝑢12(𝑘)

(5.8a)

𝑃2(𝑘 + 1|𝑘) = 𝐹 ᵀ12(�̃�
ᵀ
2𝑃2(𝑘 |𝑘)�̃�2 + Σ2)𝐹12. (5.8b)

Equations (5.8) are standard open-loop state and covariance predictions of the system
in (5.4), so the derivations follow from Kalman filter theory [8, p. 111].

Given this error distribution, we can now, using E[𝑒ᵀ𝑒]= ∥E[𝑒] ∥2+Tr(Var[𝑒]), solve
for the triggering rule (5.5): At every communication instant, find the smallest𝑀 >1

108 Chapter 5. Control-Guided Communication

Figure 5.3: CPS testbed with 15 wireless DPP nodes and five cart-pole systems (A and B are
real systems; C, D, and E are simulated systems). The network has a diameter of three hops.

Node 10 is the network manager.

such that

∥𝐹12(�̃�
𝑀

2 𝑥2(𝑘) +
M∑︁
𝑖=0

�̃�
𝑀−𝑖
2 𝐵2𝑢21(𝑘 + 𝑖)) − 𝑢12(𝑘)∥2

+ Tr(𝐹 ᵀ12(�̃�
ᵀ
2𝑃2(𝑘 +𝑀 |𝑘)�̃�2 + Σ2)𝐹12) > 𝛿, (5.9)

with Tr the trace of a matrix.

So far, we assumed that agent 2 has knowledge about the future development of
𝑢21(𝑘 + 𝑖), which does not hold in practice. Because agent 2 has no information about
the current state of agent 1 and hence cannot infer the future development of 𝑢21(𝑘 + 𝑖),
it approximates 𝑢21(𝑘 + 𝑖) as 𝑢21(𝑘 + 𝑖) = 𝑢21(𝑘) ∀𝑖 ∈ [0, 𝑀). With this, the input
𝑢21(𝑘 + 𝑖) in (5.8a) and (5.9) effectively becomes a constant.

We note that one way to let agent 1 reason about agent 2’s state would be to send the
entire state 𝑥2(𝑘) instead of the control input 𝑢12(𝑘). Agent 1 could use this state to
compute 𝑢12(𝑘) and to predict the evolution of agent 2’s state. This, however, incurs
higher communication demands at each instant as the state is typically of higher
dimension than the input.

5.6 Experimental Evaluation

We evaluate our approach using experiments on a real CPS testbed [15] shown in Fig-
ure 5.3. It consists of 15 wireless DPP nodes and five cart-pole systems (or pendulums),
where A and B are real systems and C, D, and E are simulated systems. The nodes
are distributed in an office space of about 15 m by 20 m, and transmit at −6 dBm and
250 kbps in the 868 MHz band, forming a three-hop wireless network.

5.6. Experimental Evaluation 109

5.6.1 Scenario and Metrics

Scenario. The control task of each pendulum is to locally stabilize itself and to
synchronize its cart position with all others. Since each system has access to its
local state 𝑥𝑖 (𝑘), we can run the local feedback loop at a faster update interval than
communication over the network occurs. Here, we choose an update interval of 10 ms
for the local loop. Control inputs 𝑢𝑖 𝑗 (𝑘) of the other agents are communicated over the
wireless multi-hop network, where the exchange of all control inputs takes 50 ms (i.e.,
one communication round with up to 𝐾 = 5 data slots and 4 B per agent). We use the
scheduling policy outlined in Section 5.4. To challenge the synchronization of the cart
positions, we apply a sine distortion signal (3.6 s period with an amplitude of ±5 V) to
the control input of pendulum B.

The controllers are designed as described in Section 5.5. We use the same model for
the cart-pole system as in Chapter 4 and also adopt the 𝑄𝑖 matrices used for periodic
synchronization. For 𝑄sync, we set the first diagonal entry to 20 and all other entries
to zero to express our desire to synchronize the cart positions. Further, we choose
𝑅𝑖 = 0.01 for all systems.

Metrics. Our evaluation uses the following metrics:

• root mean square of the synchronization error (RMSE) computed based on the cart
positions of all pendulums in an experiment as a measure of control performance;

• utilization of the available data slots during each round, broken down into free
slots (radio off), slots used for control traffic, and slots used for additional (other)
traffic;

• radio duty cycle, the fraction of time a node has its radio on, which is a widely
used metric in the low-power wireless networking literature (see, e.g., [49, 56])
for quantifying communication energy cost.

In the following, we first illustrate the run-time operation of our co-designed wireless
control system in a real experiment, and then evaluate the trade-off among control
performance, communication energy cost, and serving additional traffic as a function
of the triggering threshold.

5.6.2 Efficient Resource Arbitration and Allocation

Figure 5.4 shows a real trace of the control performance (top) and the slot utilization in
each communication round (bottom) over time for a triggering threshold of 𝛿 = 0.03.
Looking at the utilization, we see that, on average, less than one third of the available
bandwidth is needed for control traffic. Our co-design approach effectively uses the
freed bandwidth to schedule additional traffic (here at most one slot per round according
to the example scheduling policy from Section 5.4) and to shut down the remaining
bandwidth completely. During the many free slots all nodes have their radios turned

110 Chapter 5. Control-Guided Communication

Figure
5.4:C

ontrolperform
ance

and
bandw

idth
utilization

overtim
e,recorded

during
one

ofourexperim
ents.The

scheduling
policy

described
in

Section
5.4

isused
butapplicationscan

also
specify

any
otherpolicy.Each

verticalline
in

the
low

erfigure
representsa

com
m
unication

round.The
controltraffi

c
dem

andsvary
overtim

e
betw

een
0
and

4
slots.

O
ne

slotisalw
aysused

forothertraffi
c
and

the
rem

aining
free

slotsare
shutdow

n
to

save
com

m
unication

energy.

5.6. Experimental Evaluation 111

(a) Control performance. (b) Radio-duty cycle.

(c) Bandwidth available for other traffic.

Figure 5.5: Trade-off between control performance, communication energy efficiency, and
flexibility in serving other traffic for different fractions of control traffic, reported in terms of
the median and 25th/75th percentiles. Control performance decreases when less bandwidth
is used for control traffic. Conversely, freed resources that are not needed for control traffic
result in considerable energy savings or allow to serve other traffic (e.g., status, sensors).

off, which saves significant amounts of energy. Due to the sine distortion signal, the
RMSE at the top exhibits a similar shape.

5.6.3 Control Performance vs. Efficiency vs. Flexibility

The triggering threshold 𝛿 allows a user to trade control performance for communica-
tion energy efficiency and flexibility in serving other traffic. To evaluate this trade-off,
we consider six different thresholds and perform for each threshold three 2-minute
experiments. In addition, we perform experiments with 𝛿 = 0 to obtain results for peri-
odic control, where all agents communicate in every time step requiring all bandwidth
for control traffic. For each threshold, we report the median and 25th/75th percentiles
across the three experiments.

Figure 5.5 shows RMSE, radio duty cycle for control traffic, and fraction of bandwidth
available for other traffic against the fraction of bandwidth used for control traffic. We
use this intuitive unit for the x-axis instead of the triggering threshold 𝛿 because our
measurements reveal that each 𝛿 corresponds to a certain fraction of bandwidth used
for control traffic with negligible variance across experiments with the same 𝛿 .

Looking at Figure 5.5, we observe that the more bandwidth is used for control traffic,
the better the control performance and the less bandwidth is available for other traffic.
As expected, higher bandwidth demands result in a higher radio duty cycle. Using
25 % of the available bandwidth for control traffic, the control performance is still

112 Chapter 5. Control-Guided Communication

comparable to the periodic baseline. Further bandwidth reductions lead to a noticeable
decrease in control performance compared with the periodic baseline of up to 22 %
when only 11 % of the available bandwidth is used for control traffic. At the same
time, up to 87 % of communication energy can be saved, while the vast majority of the
bandwidth is available for other traffic. Overall, these experimental results demonstrate
that our control-guided communication approach allows for exploiting this trade-off
to meet a wide range of requirements of emerging CPS applications.

5.6. Experimental Evaluation 113

Postscript

The limited communication bandwidth is an inevitable bottleneck in emerging CPS
applications, using more agents and generating larger traffic volumes. Modern ETC and
STC designs can reduce the generated traffic without sacrificing control performance.
However, transferring those savings from the control side to the communication side to
gain a real end-to-end benefit is non-trivial as communication resources are allocated
in advance. In particular, there is no solution for wireless multi-hop networks. We
have addressed this shortcoming by proposing control-guided communication, a new
co-design approach where the control system predicts and informs the communication
system about future resource demands. As a result, bandwidth and energy can be
saved or reallocated to additional agents or other kinds of traffic. Experiments on a
CPS testbed demonstrate the effectiveness of our approach.

6
Scaling Beyond Bandwidth Limitations:

Wireless Control With Stability

Guarantees Under Overload

Preface

Our control-guided communication approach in the previous chapter integrates a
modern control design (STC), thereby improving the interaction between a growing
number of agents and enabling more adaptive, scalable, and efficient CPS. However,
while ETC and STC designs can effectively reduce the generated control traffic on
average, they cannot prevent situations in which many or potentially all agents want
to communicate simultaneously. This leads to overload situations, where the commu-
nication demand exceeds the available bandwidth, resulting in unpredictable message
losses and, thus, the inability to give stability guarantees or performance bounds.

In this chapter, we overcome the overload problem and propose a CPS design that
can guarantee stability while scaling beyond bandwidth limitations. Based on a novel
co-design, combining control via predictive triggering and our wireless communication
primitiveMixer (see Chapter 2), we can efficiently distribute communication needs
and dynamically allocate the available bandwidth to agents with the greatest need.
We validate our system with experiments on a real CPS testbed featuring 20 cart-pole
systems that synchronize their movements over a multi-hop network. The results show
that our solution achieves significantly better control performance under overload
than the state of the art. Moreover, we formally prove that our co-design guarantees
closed-loop stability for physical systems with stochastic LTI dynamics.

116 Chapter 6. Scaling Beyond Bandwidth Limitations

6.1 Introduction

Distributed control over wireless networks is essential for CPS in which multiple
agents work on a common task. Examples include mobile robots jointly manufacturing
a product [17, 177] and drones flying in formation in a rescue mission [61]. To support
emergingmulti-agent CPS, a tight integration and co-design of wireless communication
and control is needed that:

• Facilitates distributed control. To coordinate their activities, each agent must be
capable of exchanging messages with every other agent. In this way, each agent
can drive a local control loop based on local sensor readings (e.g., a drone can
stabilize its flight), while in addition communication with other agents allows to
solve a distributed control task (e.g., drone swarm keeping a desired formation).
This is commonly referred to as multi-agent systems [107].

• Tames and accounts for network imperfections. Control of dynamical systems like
drone swarms requires information exchange every few hundred milliseconds
across large distances [140]. Thus, multi-hop communication with bounded
latency and high reliability is crucial. Moreover, because wireless communication
is notoriously unreliable, occasional message losses and communication delays
must be accounted for by the control design.

• Caters for small cost, weight, form factor, and energy consumption. Depending
on the application scenario it can be beneficial, if not necessary, to deploy the
entire multi-agent CPS on low-cost, low-power embedded hardware with small
weight and form factor, for example, to not exceed the maximum payload of a
drone or to support remote energy-harvesting sensors [17].

While meeting these requirements is challenging in itself, multi-agent CPS also face
an overload problem. To illustrate, let us consider the scenario shown in Figure 6.1.
The bandwidth 𝑀 available per time step (update interval) can be used to transmit
up to 𝑀C control messages and up to 𝑀A messages carrying other application data,
such as photos and video streams [17, 61]. However, as applications become ever
more sophisticated—requiring, for example, more agents, shorter update intervals, and
higher-volume data streams—the generated traffic inevitably exceeds the available
bandwidth𝑀 . Specifically, a system is overloaded, when the control traffic generated
by periodic control exceeds 𝑀C. Periodic control in an overloaded system causes
additional message loss equal to the amount of bandwidth exceedance, which may
make it impossible to guarantee closed-loop stability and to achieve the required
control performance.

Advances in wireless communication technology cannot solve the overload problem:
The network bandwidth remains a limited resource that is ultimately outrun by in-
creasing application demands. On the other hand, as illustrated in Figure 6.1 and
detailed in Section 6.2, existing approaches such as ETC and STC can only reduce
the generated control traffic on average compared to periodic control. However, in

6.1. Introduction 117

Figure 6.1: Illustration of the problem and approaches. The network bandwidth𝑀 available
per time step (update interval) can be used to transmit up to 𝑀C control messages and
up to𝑀A application messages. A system is overloaded if the control traffic generated by
periodic control exceeds𝑀C and therefore𝑀 . Using ETC or STC in an overloaded system
cannot prevent temporary bandwidth exceedances, resulting in unpredictable behavior.
Our approach ensures that the generated control traffic never exceeds𝑀C, and closed-loop

stability can be provably guaranteed.

an overloaded system they typically cannot prevent situations where the bandwidth
is temporarily exceeded. The behavior of the system during such situations (e.g., in
terms of closed-loop stability) is unpredictable, which is unacceptable for critical CPS
applications requiring a priori guarantees [144].

Contributions. We present the design, analysis, and real-world evaluation of a
wireless CPS that addresses the overload problem, while meeting all of the above-
mentioned requirements. Using our approach, the generated control traffic never
exceeds the fraction𝑀C of the bandwidth reserved for control (see Figure 6.1), and we
derive stability guarantees for the entire multi-agent CPS.

As described in Section 6.3 to Section 6.6, our approach is based on a novel co-design and
tight integration of wireless communication and control. The key idea is to determine
how urgent each agent needs to transmit control data, and to assign the available
control bandwidth 𝑀C in every update interval to those agents that currently have
the highest need. Although the communication system we design is highly reliable,
occasional message loss cannot be avoided due to the limited time for communication.
Our control design accounts for such message loss as well as communication delays.
By tightly integrating communication and control, we reduce the jitter caused by
imperfect synchronization of distributed hardware components in real CPS to the
point where it can be neglected. As a result, our overall solution is amenable to a
formal end-to-end analysis of all relevant CPS components (communication, control,
and physical system), which allows us to prove closed-loop stability for heterogeneous
agents with stochastic LTI dynamics.

118 Chapter 6. Scaling Beyond Bandwidth Limitations

We evaluate our approach on a 20-agent CPS testbed. Each agent consists of a low-
power wireless embedded device and a cart-pole system, whose dynamics are repre-
sentative of mechanical systems found in real-world applications [11, 171]. The 20
agents form a 3-hop network, exchanging control traffic every 100 ms to synchronize
the movement of their carts. Our experiments demonstrate that, in the scenarios we
tested, the overall CPS is stable as predicted by our theoretical analysis despite external
disturbance. The experimental results further show that our approach synchronizes
the carts better than a highly optimized periodic baseline, while using fewer control
messages.

In summary, this work makes the following contributions:

• We present the first practical wireless CPS design that addresses the overload
problem. With this, we improve the scalability of CPS toward future applications
with increasing demands.

• We formally prove that our wireless CPS design guarantees closed-loop stabil-
ity for heterogeneous agents (i.e., physical systems) with potentially different
stochastic LTI dynamics.

• Real-world experiments on a 20-agent CPS testbed confirm our theoretical results
and demonstrate an improved control performance while using fewer control
messages.

6.2 Problem and Related Work

This section defines the research problem we tackle in this work and reviews relevant
prior work.

6.2.1 Problem Formulation

Scenario. Motivated by emerging applications in search and rescue, manufacturing,
or construction [17, 61, 177], we consider wireless CPS consisting of 𝑁 heterogeneous
agents that jointly work on a distributed control task. Each agent runs a controller
that computes actuator commands based on local sensor readings and information
received from other agents. While local readings allow each agent to, for instance,
stabilize itself, communication is essential to solve the distributed task, such as flying in
formation. To this end, the agents are equipped with radio frequency (RF) transceivers
to exchange messages over a wireless multi-hop network.

The agents’ physical dynamics and the required control performance govern the update
interval at which control information is to be exchanged in a many-to-many fashion
among the agents. In this work, we target distributed control of mechanical systems
requiring update intervals on the order of tens to hundreds of milliseconds [4, 140].
Conversely, the bandwidth of the wireless network determines the number 𝑀 of
messages that can be exchanged within each update interval. Out of these, as illustrated

6.2. Problem and Related Work 119

in Figure 6.1, only𝑀C <𝑀 messages can carry control information. This is because the
wireless network is also used to transmit other application data (e.g., video streams,
photos, status and configuration data), which occupy 𝑀A = 𝑀 − 𝑀C messages per
update interval.

Overload problem. The state of the art with respect to the outlined application
scenario supports at most 𝑁 = 5 agents at an update interval of 50 ms when no appli-
cation traffic is transmitted (see Chapter 4 and Chapter 5). This is insufficient for many
envisioned CPS applications requiring tens to hundreds of agents, ever shorter update
intervals to realize more sophisticated control tasks, and the continuous collection of
high-volume data streams, for example, to feed machine-learning models [17, 61, 177].

The bottleneck is the limited network bandwidth 𝑀 . While advances in wireless
technology can increase𝑀 , the required infrastructure costs may not be economically
viable [52]. Moreover, the traffic volumes of machine-to-machine communication to
enable monitoring and control are expected to see annual growth rates of up to 50 %
over the next ten years [38], quickly outrunning any increase in 𝑀 . We refer to a
system as overloaded when the control traffic generated by periodic control exceeds
the available control bandwidth𝑀C. As a result, it becomes impossible to guarantee
stability and achieve the desired control performance with periodic control methods.

6.2.2 Related Work

How to achieve high-performance control under limited communication resources has
been widely studied. However, as discussed below, most prior approaches cannot solve
the overload problem. A few theoretical control concepts can in principle address the
problem, but none of these works considers the challenges of integrating control with
a real network, neither wired nor wireless.

Event- and self-triggered control. ETC and STC methods aim to efficiently use the
limited communication bandwidth [63, 124]. To this end, they only let agents transmit
control information when needed (e.g., some error exceeds a threshold) instead of
letting all agents transmit control information in every update interval as in standard
periodic control. However, while ETC and STC can reduce the control traffic on average
compared to periodic control, they cannot solve the overload problem: At any point in
time, it can happen that more agents signal communication needs than the network
can support, as illustrated in Figure 6.1. How to resolve such situations and provide
stability guarantees under overload is an unsolved problem.

Further, using ETC, agents make communication decisions instantaneously, which
leaves the communication system no time to reallocate unused bandwidth to other
agents, wasting precious resources. Using STC, an agent decides about the next time it
needs to communicate at the current communication instant, so unused bandwidth
can be reallocated. However, there is no way to react between two communication
instants; that is, the agent cannot react to unforeseen disturbances, which negatively
affects control performance and stability.

120 Chapter 6. Scaling Beyond Bandwidth Limitations

Predictive triggering. Predictive triggering can handle disturbances by letting agents
decide at every time step if they need to communicate some time in the future [169, 170].
Moreover, Mastrangelo et al. extend predictive triggering toward non-binary commu-
nication decisions, where a priority measure based on the probability of exceeding a
threshold is used to schedule communication [120]. Unlike the binary communication
decisions in ETC and STC, this approach can in principle address the overload prob-
lem, which is why we adopt it. However, compared with all prior work on predictive
triggering, we a) propose an improved priority measure that is efficiently computable
on resource-constrained hardware, b) address the challenges of integrating predictive
triggering with a real wireless communication system, c) conduct a formal stability
analysis, and d) validate our overall co-design on a real-world CPS testbed.

Contention resolution. Although it has been shown [120] that predictive triggering
yields better performance than contention resolution [117, 128], we discuss it here as
an alternative theoretical concept that can in principle address the overload problem.
Besides the inability of some contention resolution algorithms to support heteroge-
neous agents [117], which is a common requirement in practice, none of the existing
algorithms (see, e.g., [13, 37, 117, 128, 145]) has been integrated with a real network.
Instead, the algorithms are exclusively evaluated in simulation, making assumptions
about a potential communication system that are not backed up through real-world
experiments.

Online scheduling. Recently, a few distributed [126, 192] and autonomous [125]
scheduling approaches for wireless control systems have been proposed. The goal
of these approaches is to adjust sampling periods and communication schedules in
response to unexpected external disturbances and varying wireless link qualities.
Although their distributed operation resembles our scheduling approach and also shares
the goal of adapting to external disturbances, the scheduling criterion and techniques
are fundamentally different. For instance, rather than adjusting the schedules to link
quality changes, such changes are effectively accounted for by our ST and network
coding based communication system, thereby hiding them from the scheduler.

Practical control-communication co-designs. Table 6.1 qualitatively compares
our and prior practical co-designs that predict communication demands and validate
the integration of control with wireless communication against the dynamics of real
physical systems and real wireless networks.

Araujo et al. use STC to control a quadruple tank process over a single-hop network
with update intervals of a few seconds [10]. Saifullah et al. present a multi-hop
solution for power management in data centers, using update intervals of 20 s or
longer [150]. While their control design is not explicitly based on STC, it exhibits
similar properties, including the inability to cope with overload. The same holds for
our co-design presented in Chapter 5 and the work by Santos et al. [152]. Both employ
an STC approach and demonstrate control of fast physical systems; however, only our

6.3. Overview of Co-Design Approach 121

Table 6.1: Comparison to prior practical co-designs of control and wireless communication
that predict communication demands and have been validated using experiments on real
physical systems and wireless networks. With fast physical systems we refer to the ability of
a co-design to support update intervals of a few hundreds of milliseconds, which is typically
required to control mechanical systems, such as a quadcopter swarm [140]. Co-designs that
can quickly react to disturbances are here defined as those that can spontaneously react
based on current measurements in contrast to, for example, STC designs, which decide about

their next communication instant at the current one and cannot react in-between.

Work Fast physical Multi-hop Quickly react to Stability Addresses
systems networks disturbances guarantees overload

[10] ✗ ✗ ✗ ✓ ✗

[150] ✗ ✓ ✓ ✗ ✗

[152] ✓ ✗ ✗ ✗ ✗

Chapter 5 ✓ ✓ ✗ ✗ ✗

This ✓ ✓ ✓ ✓ ✓

solution supports control over multi-hop networks. None of the works based on STC
can spontaneously react to disturbances, and only [10] provides stability guarantees.

We also note a few other recent control-communication co-designs that use STC [110,
112] or ETC [20, 172] to reduce communication and that have been evaluated on real
wireless networks. In contrast to our work, these co-designs target slow physical
systems (e.g., water distribution networks [20, 172]) requiring update intervals on the
order of seconds and have only been evaluated on simulated physical systems. Most
importantly, none of them addresses the overload problem.

In summary, the co-design proposed in this chapter is the first to address the overload
problem, while providing several other properties (see Table 6.1) essential for emerging
CPS applications.

6.3 Overview of Co-Design Approach

To overcome the overload problem, we propose a novel co-design approach that
integrates control and communication at design-time (i.e., prior to operation) and at
run-time (i.e., during operation). The design of the communication system tames
network imperfections to the extent possible, and the design of the control system
takes the remaining imperfections in terms of message loss and delay into account.
During operation, the control system continuously reasons about the future need for
communication of each of the 𝑁 agents. The communication system time-synchronizes
the agents and adapts to communication needs by dynamically assigning the 𝑀C

messages available for control traffic in each update interval to agents with the highest
need. As illustrated in Figure 6.1, our co-design approach ensures that the generated
control traffic never exceeds𝑀C, and closed-loop stability can be provably guaranteed.

122 Chapter 6. Scaling Beyond Bandwidth Limitations

Figure 6.2 shows the overall system architecture and the data flow between the building
blocks inside each agent. Our novel control system consists of three building blocks:

B1 The controller performs the desired control task for the physical system connected
to agent 𝑖 . It locally stabilizes the individual system, while at the same time it
exploits many-to-all communication capabilities to realize the distributed control
task.

B2 The priority measure indicates an agent’s future need for communication to meet
the required control performance. The measure makes it possible to compare
communication needs independent of the specific control tasks and for different
physical dynamics of heterogeneous agents.

B3 The estimator provides the controller and the priority measure with estimates of
the current state of all agents based on the available information received over
the network.

We jointly design the control system with a novel wireless communication system,
which consists of the following three building blocks:

B4 The state exchange distributes, in each update interval 𝑘 ,𝑀C control messages
over the wireless multi-hop network to all 𝑁 agents. The set of at most 𝑀C

agents that are allowed to transmit their messages may change from one update
interval to the next. Because of unavoidable packet losses when communicating
over wireless channels, it is possible that an agent receives only a subset of the
transmitted messages; however, our experiments and empirical evidence from
Chapter 2 show that the probability is extremely low (i.e., less than 0.01 %).

B5 The priority exchange builds on the mechanism fromB4 to distribute each agent’s
current priority measure among all 𝑁 agents in the system.

B6 The distributed scheduler dynamically assigns the𝑀C control messages available
in each update interval 𝑘 to the agents with the highest priorities. Every agent
computes the global communication schedule locally. If an agent does not have
full information about the latest priorities, it is guaranteed that it does not disturb
the communication of the other agents.

Road map. In Section 6.4 and Section 6.5, we detail the co-design of the control
and wireless communication systems along the different building blocks B1 to B6.
Then, we describe the careful integration of control and communication, and formally
prove stability of the entire CPS for physical systems with stochastic LTI dynamics in
Section 6.6. Finally, Section 6.7 complements our analytical results through real-world
experiments on a CPS testbed.

6.3. Overview of Co-Design Approach 123

Fi
gu

re
6.
2:
Sy

st
em

ar
ch
ite

ct
ur
e
of

ou
rp

ro
po

se
d
co
-d
es
ig
n
ap
pr
oa
ch
.
Th

e
CP

S
co
ns
is
ts
of
𝑁

he
te
ro
ge
ne
ou

s
ag
en
ts
w
or
ki
ng

on
a
co
m
m
on

ta
sk
.E

ac
h
ag
en
tc

on
tr
ol
s
a
ph

ys
ic
al

sy
st
em

.T
o
co
or
di
na
te

th
ei
r
ac
tio

ns
,a
ll

ag
en
ts
co
m
m
un

ic
at
e
th
ro
ug

h
a
w
ire

le
ss

m
ul
ti-
ho

p
ne
tw

or
k.

Ω
𝑖
de
no

te
st
he

se
to

fa
ge
nt
sr
el
ev
an
tf
or

th
e
co
nt
ro
l

ta
sk
,a
nd

𝐽
de
no

te
sa

ll
ag
en
ts
w
ho

se
in
fo
rm

at
io
n
ha
sb

ee
n
su
cc
es
sf
ul
ly

ex
ch
an
ge
d
in

th
e
pr
ev
io
us

tim
e
st
ep
.

124 Chapter 6. Scaling Beyond Bandwidth Limitations

6.4 Predictive Triggering and Control System

In this section, we present the design of the control system. We first provide a model
of the physical system and then show how the different building blocks of Figure 6.2
are designed. In particular, we introduce the controller (B1) and the estimator (B3) in
Section 6.4.2, and derive the priority measure (B2) in Section 6.4.3.

6.4.1 Control System Model

We consider a collection of 𝑁 stochastic LTI systems. The dynamics of the physical
system 𝑖 (cf. Figure 6.2) of this collection are given by

𝑥𝑖 (𝑘 + 1) = 𝐴𝑖𝑥𝑖 (𝑘) + 𝐵𝑖𝑢𝑖 (𝑘) + 𝑣𝑖 (𝑘), (6.1)

with discrete time index 𝑘 ∈ N, state 𝑥𝑖 (𝑘) ∈ R𝑛 , input 𝑢𝑖 (𝑘) ∈ R𝑚 , 𝐴𝑖 and 𝐵𝑖 matrices
of appropriate dimensions, and process noise 𝑣𝑖 (𝑘) ∈ R𝑛 , which we assume to follow a
normal distribution with zero mean and variance Σvi . Further, we assume the noise
processes of individual agents to be uncorrelated, that is, E[𝑣𝑖 (𝑘)𝑣 𝑗 (𝑘)] = 0 for all 𝑖 ≠ 𝑗 ,
and 𝑘 . The time needed by the communication system to distribute up to𝑀 messages
determines the update interval, which represents the fixed length of a discrete time
step 𝑘 .

We consider a distributed control problem, that is, the input 𝑢𝑖 (𝑘) of agent 𝑖 at time 𝑘
depends not only on its own state but also on the state of (possibly all) other agents.
Assuming static linear feedback, the control law for agent 𝑖 becomes

𝑢𝑖 (𝑘) = 𝐹𝑖𝑖𝑥𝑖 (𝑘) +
∑︁
𝑗∈Ω𝑖

𝐹𝑖 𝑗 �̂�𝑖 𝑗 (𝑘), (6.2)

with feedback matrices 𝐹𝑖𝑖 , 𝐹𝑖 𝑗 ∈ R𝑚×𝑛 , Ω𝑖 the set of all agents whose state is relevant
to agent 𝑖 (i.e., those for which 𝐹𝑖 𝑗 is non-zero), and �̂�𝑖 𝑗 (𝑘) agent 𝑖’s estimate of agent
𝑗 ’s state. The estimate of other agents’ states is based on the information transmitted
over the wireless network (cf. Figure 6.2). However, we account for the case that only
𝑀C < 𝑁 agents can transmit information in every update interval 𝑘 , that is, an agent 𝑖
may not receive state updates from all other agents 𝑗 ∈ Ω𝑖 at time step 𝑘 .

Due to the clearer presentation, we assume throughout the chapter that all agents
operate with the same update interval 𝑘 . Nevertheless, our design also supports
heterogeneous agents with different update intervals as long as the communication
system can provide the required update interval. Intuitively, agents that are stable at
longer update intervals, that is, agents with slower dynamics, can also be stabilized at
shorter update intervals. We evaluate different types of systems in Section 6.7, where
the heterogeneity is reflected in different communication needs.

6.4. Predictive Triggering and Control System 125

6.4.2 Control Architecture

Based on the model (6.1), we now introduce the estimator (B3) that lets agent 𝑖 estimate
agent 𝑗 ’s current state. Afterward, we discuss the feedback matrices 𝐹𝑖𝑖 and 𝐹𝑖 𝑗 of the
controller (B1).

State estimation. As stated in the previous section, agent 𝑖 needs information of the
other agents’ states to compute its control input. However, only𝑀C < 𝑁 agents can
transmit their state information over the communication network. Thus, for all agents
from which agent 𝑖 did not receive an update, it needs to estimate the current state
based on the data it received so far. Further, information sent over the network is
delayed by one time step and subject to message loss. An estimate of agent 𝑗 ’s current
state, compensating sporadic message exchange, transmission delays, and message
loss, can be obtained via

�̂�𝑖 𝑗 (𝑘) =
{︄
(𝐴 𝑗 + 𝐵 𝑗𝐹 𝑗 𝑗)𝑥 𝑗 (𝑘 − 1) + 𝐵 𝑗

∑︁
ℓ∈Ω 𝑗

𝐹 𝑗 ℓ �̂�𝑖ℓ (𝑘 − 1) if ^ 𝑗 (𝑘) = 1 ∧ 𝜙 𝑗 (𝑘) = 1

(𝐴 𝑗 + 𝐵 𝑗𝐹 𝑗 𝑗)�̂�𝑖 𝑗 (𝑘 − 1) + 𝐵 𝑗
∑︁
ℓ∈Ω 𝑗

𝐹 𝑗ℓ �̂�𝑖ℓ (𝑘 − 1) otherwise,
(6.3)

where ^ 𝑗 (𝑘) denotes, whether (^ 𝑗 (𝑘) = 1) or not (^ 𝑗 (𝑘) = 0) agent 𝑗 transmitted its
state in the current round. Possible message loss is captured by 𝜙 𝑗 (𝑘) (𝜙 𝑗 (𝑘) = 0 if the
message was lost and 𝜙 𝑗 (𝑘) = 1 otherwise). The intuition behind (6.3) is as follows:
in case of successful communication, agent 𝑖 receives agent 𝑗 ’s state. To compensate
for the transmission delay, agent 𝑖 makes a one step ahead prediction. In case of no
communication (either intentionally or due to message loss), it propagates its last
estimate of agent 𝑗 ’s state (�̂�𝑖 𝑗).

Control objective. While we consider distributed control, the individual agents may
be unstable, that is, the 𝐴𝑖 in (6.1) may have eigenvalues with absolute value greater
than one. Thus, each agent needs to locally stabilize itself and solve the distributed
control task. To make the controller design precise, we consider synchronization as an
example of distributed control. We here understand synchronization as trying to have
the states of all agents evolve as close as possible. That is, we want to keep the error
𝑒𝑖 𝑗 (𝑘) ≔ 𝑥𝑖 (𝑘)−𝑥 𝑗 (𝑘) between the states of any two agents 𝑖 and 𝑗 small. Alternatively,
it is also possible to only synchronize a subset of the states. Synchronizing the states
(or parts thereof) of multiple agents is a frequently considered problem setting in
distributed control and also known under the terms consensus or coordination [106].

Controller design. For ease of presentation, we assume a two-agent setting in the
following. However, as we also show in the experimental evaluation, the design
straightforwardly extends to more agents. Based on the control objective, we start by

126 Chapter 6. Scaling Beyond Bandwidth Limitations

formulating a cost function

𝐽 = lim
𝐾→∞

1
𝐾
E

[︄
𝐾−1∑︁
𝑘=0

2∑︁
𝑖=1

(︁
𝑥𝑖 (𝑘)ᵀ𝑄𝑖𝑥𝑖 (𝑘) + 𝑢𝑖 (𝑘)ᵀ𝑅𝑖𝑢𝑖 (𝑘)

)︁
+(𝑥1(𝑘) − 𝑥2(𝑘))ᵀ𝑄sync(𝑥1(𝑘) − 𝑥2(𝑘))

]︄
,

(6.4)

with positive semidefinite matrices 𝑄𝑖 and 𝑄sync, which penalize deviations from
the equilibrium state and from the synchronization objective, and positive definite
matrix 𝑅𝑖 , which penalizes high control inputs. Since both agents have an estimate
of the other agent’s current state, obtained from (6.3), we can rewrite the term in the
summations in (6.4), using the augmented state �̃� (𝑘) = [𝑥1(𝑘), 𝑥2(𝑘)]ᵀ and augmented
input �̃� (𝑘) = [𝑢1(𝑘), 𝑢2(𝑘)]ᵀ, as

�̃�T(𝑘)
(︄
𝑄1 +𝑄sync −𝑄sync

−𝑄sync 𝑄2 +𝑄sync

)︄
�̃� (𝑘) + �̃�T(𝑘)

(︄
𝑅1 0
0 𝑅2

)︄
�̃� (𝑘) . (6.5)

We now seek to find the optimal feedback controller that minimizes the cost function 𝐽 .
Since the cost function 𝐽 puts an emphasis on the stability of each individual agent
(through 𝑄𝑖) and on the synchronization objective (through 𝑄sync), solving the opti-
mization problem results in finding a trade-off between both objectives. This trade-off
can be influenced through the choice of 𝑄𝑖 and 𝑄sync. Using the formulation in (6.5),
this problem can be solved using standard tools from linear optimal control [7] and
yields a static linear feedback controller as in (6.2). Note that this implies that the
agents do not need to solve the optimization problem at run-time. Instead, the optimal
controller can be computed offline before the system operation commences.

6.4.3 Priority Measure

We now discuss how to derive a priority measure (B2) that enables the communication
system to allocate the𝑀C available control messages to the agents with the highest
needs. If state estimates (6.3) were perfect, there would be no need for any communi-
cation. However, since we consider noisy dynamics (cf. (6.1)), the estimates will, over
time, start to deviate from the true state. Thus, we seek to transmit information as
soon as the error between estimated and true state becomes too large. Therefore, agent
𝑖 computes the same1 estimate other agents have of its state and derives the estimation
error 𝑒𝑖 (𝑘) ≔ 𝑥𝑖 (𝑘) − �̂�𝑖𝑖 (𝑘). Ideally, we would now like agent 𝑖 to transmit its state
whenever 𝑒𝑖 (𝑘) exceeds some threshold. However, we need to a) announce commu-
nication needs in advance, that is, we cannot use the current 𝑒𝑖 (𝑘) to decide about
communication, and b) we need a measure that quantifies agent 𝑖’s communication
demand in a generic way, instead of a binary decision as it is the case with ETC and
STC.

1Estimates may diverge in case of message loss. We discard impact of message loss for the triggering
design and analyze its impact in the stability analysis in Section 6.6.2.

6.4. Predictive Triggering and Control System 127

We first introduce the measure that we use to quantify whether the estimation error is
“too large.” This measure is the squared Mahalanobis distance [115] of the estimation
error from the origin,

∥𝑒𝑖 (𝑘)∥2M ≔ E[(𝑒𝑖 (𝑘))]ᵀ Var[𝑒𝑖 (𝑘)]−1 E[(𝑒𝑖 (𝑘))] . (6.6)

The distance between an observation and a random variable is in one dimensional
settings often measured by assessing how many standard deviations it is away from
the mean. The Mahalanobis distance extends this idea to multiple dimensions. For
Var[𝑒𝑖 (𝑘)] = 𝐼𝑛 , with 𝐼𝑛 the 𝑛 × 𝑛 identity matrix, the Mahalanobis distance reduces to
the Euclidean distance.

Directly using the squared Mahalanobis distance to schedule agents would yield a
viable triggering strategy for homogeneous agents. Yet, for heterogeneous agents, the
estimation errors may be in different orders of magnitude and, thus, not comparable.
Further, instead of an instantaneous decision, we need to announce communication
needs in advance. As shown in Figure 6.2, at time step 𝑘 , each agent receives states
that were sent at 𝑘 − 1, that is, there is a delay of one time step. Thus, we consider the
probability of the squared Mahalanobis distance exceeding a predefined threshold 𝛿𝑖 in
𝐻 + 1 time steps. The parameter 𝐻 denotes how many time steps the communication
system needs to reschedule resources. To compute the Mahalanobis distance, we need
the expected value and the variance of the error 𝑒𝑖 (𝑘 + 𝐻 + 1). Since the error is the
difference between current state and estimated state, its expected value and variance
can be calculated using expected value and variance of the state at time 𝑘 + 𝐻 + 1.
Assuming no communication between 𝑘 and 𝑘 +𝐻 + 1 and exploiting that the noise
sequences are uncorrelated, those are given by

E[𝑥𝑖 (𝑘 + H + 1)] = 𝐴H+1
𝑖 𝑥𝑖 (𝑘) +

H∑︁
𝑠=0

𝐴𝑠𝑖𝐵𝑖𝑢𝑖 (𝑘 − 1 − 𝑠) (6.7a)

Var[𝑥𝑖 (𝑘 + H + 1)] =
H∑︁
𝑠=0

𝐴𝑠𝑖 Var[𝑣𝑖 (𝑘 − 1 − 𝑠)] (𝐴𝑠𝑖)ᵀ, (6.7b)

where Var[𝑣𝑖 (𝑘)] = Σvi for all 𝑘 . Note that (6.7b) is constant, that is, it does not depend
on current data. Thus, the inverse needed in (6.6) can be computed a priori, leaving
only matrix multiplications that need to be done at run-time.

We define our priority measure as

𝑃H
𝑖 (𝑘) =

𝛾

(︂
𝑛
2 ,
𝛿𝑖−∥𝑒𝑖 (𝑘+H+1) ∥2M

2

)︂
Γ
(︁
𝑛
2
)︁ , (6.8)

with 𝛾 (·) the lower incomplete gamma function, Γ(·) the gamma function, and 𝑛 the
dimensionality of the physical system. This priority measure is the closed-form expres-
sion of the probability that the squared Mahalanobis distance of a normally distributed
random variable with zero mean exceeds 𝛿𝑖 − ∥𝑒𝑖 (𝑘 + H + 1)∥2M [53]. Technically, it is

128 Chapter 6. Scaling Beyond Bandwidth Limitations

therefore the probability that the Mahalanobis distance of the estimation error will
either exceed 𝛿𝑖 or shrink by more than 𝛿𝑖 − ∥𝑒𝑖 (𝑘 + H + 1)∥2M and not exactly the
sought-after probability. However, this does not change the qualitative result (systems
with higher probability of exceeding 𝛿𝑖 will have a higher priority measure) and, in that
way, allows to rank systems by priority. Further, we do not need the exact probability
of a system exceeding the threshold for any of our technical results. Note that (6.8) can
only be evaluated if the estimation error is smaller than the threshold. If the threshold
is already exceeded, we can reverse the arguments of 𝛾 (·) to compute the probability
that the estimation error falls again below the threshold.

6.5 Adaptive Communication System

The second part of our CPS co-design is the communication system. As outlined
in Section 6.3, we consider the problem that the communication bandwidth is not
sufficient to meet the demands of application and periodic control. We have𝑀C control
messages for 𝑁 agents with 𝑁 > 𝑀C, and a potentially high number of application
messages𝑀A. To quickly and reliably exchange all𝑀 = 𝑀A +𝑀C messages (B4), we
design a wireless protocol based on our communication primitive Mixer (Chapter 2).
Section 6.5.1 details how we increase the scalability of Mixer to support larger multi-
agent systems, whereas Section 6.5.2 describes novel extensions to support distributed
control based on our predictive triggering approach. Specifically, we conceive a scheme
for the efficient and reliable exchange of priorities among agents (B5), which we then
leverage for our distributed scheduling design (B6) to adaptively allocate messages to
agents with the highest communication needs.

6.5.1 Communication Support for Scalable Multi-Agent Systems

In prior approaches capable of distributed control over wireless multi-hop networks
(see Chapter 4, Chapter 5, and [16]) the latency to exchange 𝑀 messages scales as
𝑂 (𝑀𝑇), with 𝑇 the time required for the dissemination of a single message. With this
scaling behavior the number of messages that can be exchanged in a given update in-
terval is rather small. For instance, the experiments in [16] support a maximum of five
agents with a 50 ms update interval an no application traffic. To significantly improve
on this number, we adopt and enhance our many-to-all communication primitive
Mixer (Chapter 2), which will form the basis of our wireless protocol. Mixer ap-
proaches the order-optimal scaling of𝑂 (𝑀 +𝑇), resulting in a significant improvement
over the 𝑂 (𝑀𝑇) scaling for larger𝑀 and 𝑇 .

Below we give a brief overview of howMixer works and describe how we improve
its performance by a) porting it from IEEE 802.15.4 to the faster BLE PHY to reduce
𝑇 , and b) making use of the most recent network state information to communicate
more effectively. Section 6.5.2 details how we enhance Mixer’s functionality for a
systematic co-design with the predictive triggering based control system.

6.5. Adaptive Communication System 129

Fi
gu

re
6.
3:
O
ve
rv
ie
w
of

th
e
w
ire

le
ss

co
m
m
un

ic
at
io
n
pr
ot
oc
ol
.
M
ix
er

re
al
iz
es

th
e
m
an
y-
to
-a
ll
m
es
sa
ge

ex
ch
an
ge

in
a

ne
tw

or
k
(c
ol
or
s
re
pr
es
en
tm

es
sa
ge
s)
.A

M
ix
er

ro
un

d
co
ns
is
ts
of

sy
nc
hr
on

iz
ed

tim
e
sl
ot
s,
w
he
re

in
ea
ch

sl
ot

no
de
s

(A
,B

,C
)d

ec
id
ew

he
th
er

an
d
w
ha
tt
o
tr
an
sm

it.
N
od

es
bu

ild
pa
ck
et
sb

y
ra
nd

om
ly
co
m
bi
ni
ng

al
re
ad
y
re
ce
iv
ed

in
fo
rm

at
io
n,

fo
re

xa
m
pl
e,
no

de
B
se
nd

sa
co
m
bi
na
tio

n
of

bl
ue

an
d
gr
ee
n
in

slo
t2

.P
rio

rit
ie
sa

re
ex
ch
an
ge
d
an
d
ag
gr
eg
at
ed

as
pa
rt
of

M
ix
er
’s
he
ad
er
.A

tt
he

en
d
of

th
e
ro
un

d
al
ln

od
es

ha
ve

al
lm

es
sa
ge
s.
Th

e
sc
he
du

le
rr
un

sl
oc
al
ly

on
ea
ch

no
de

be
tw

ee
n

ro
un

ds
an
d
us
es

th
e
fin

al
ag
gr
eg
at
e
to

de
te
rm

in
e
th
e
gl
ob
al
m
es
sa
ge

al
lo
ca
tio

n
fo
rt
he

ne
xt

ro
un

d.

130 Chapter 6. Scaling Beyond Bandwidth Limitations

Mixer protocol operation. Mixer is a fast, efficient, and reliable communication
primitive that disseminates a set of 𝑀 messages among all nodes in a network by
using ST [196] and RLNC [70]. As shown in Figure 6.3, a Mixer round consists of
synchronized time slots, and in each slot the nodes decide independently whether
to transmit or listen for a packet. Mixer packets consist of a protocol header and a
combination of 1 to𝑀 messages as payload. Such a combination is created by choosing
a random subset of already received packets and combining their payloads via XOR.
This coding-based approach is the main reason for the improved scaling behavior, as it
makes better use of the communication channel. The slotted communication continues
until all𝑀 messages (𝑀 = 3 for the example in Figure 6.3) can be decoded by all nodes,
or the predefined maximum duration of a round has elapsed.

ST exploit the capture effect [48] describing that, under certain conditions, multiple
transmissions can overlap at a receiver, but one of the packets is likely to be received
successfully. This is comparable to a conversation between two people while at the
same time other people are talking from a greater distance. The voice signals interfere
in the air, however, it is likely possible to understand the person nearby. For example,
in slot 3 in Figure 6.3, node B successfully receives the packet from node A, despite the
interfering transmission of node C, due to the capture effect.

Mixer using Bluetooth Low Energy. The originalMixer implementation targets
IEEE 802.15.4-compliant low-power RF transceivers with a limited data rate of 250 kbps.
Another PHY in the low-power wireless domain is BLE, which supports data rates of up
to 2 Mbps in the Bluetooth 5 standard, which is 8× faster than IEEE 802.15.4. To benefit
from the faster PHY, we implemented Mixer using BLE on the Nordic Semiconductor
nRF52840 platform.

This platform also supports the IEEE 802.15.4 PHY, which makes it easier to compare
the end-to-end performance of both variants. For this purpose, we run experiments
involving several thousandMixer rounds on a 31-node testbed at Graz University of
Technology [157]. The nodes were deployed across several rooms and hallways in
an office building. With a transmit power of 8 dBm, the nodes form networks with a
diameter of 2 hops (IEEE 802.15.4) and 3 hops (BLE). Nodes exchange messages with
a size of 18 B in an all-to-all fashion, that is, in every round all nodes start with one
message (𝑀 = 31) that should be disseminated to all other nodes.

The left plot in Figure 6.4 shows the latency distribution of bothMixer variants. We
see that our BLE implementation of Mixer outperforms the original version in terms of
communication latency by 2.5–4.7× with a median of 4.2×. The main reason why the
theoretical speed-up of 8× is unattainable in practice are differences in the robustness
of the two PHYs: while the IEEE 802.15.4 PHY features a spreading code, the 2 Mbps
BLE mode is uncoded and thus more susceptible to interference. Consequently, the
number of slots needed with BLE to exchange 𝑀 messages increases compared to
IEEE 802.15.4, as visible in the right plot of Figure 6.4. At the same time, the higher data
rate reduces the length of each slot, which leads to the overall latency improvements.

6.5. Adaptive Communication System 131

Figure 6.4: Distribution of communication latency using Mixer with the IEEE 802.15.4 and
2 Mbps BLE PHY. Although communication using BLE requires more slots, because this
PHY has lower robustness, the higher data rate reduces the length of each slot and thus the

resulting latency by 4.2× (median). The strokes mark 1st, 50th, and 99th percentiles.

Figure 6.5: Histogram of Mixer’s latency using the 2 Mbps BLE PHY with and without
warmstart. Warmstarting nodes helps them communicate more effectively at the beginning

of a round and reduces latency by 31 % (median).

Warmstart. Wireless control with fast physical systems requires short update intervals.
For instance, drones need to exchange their positions every 100 ms to fly in formation
or to avoid crashes [30]. In general and from a network perspective, the topology
changes continuously in such dynamic scenarios. However, viewed from oneMixer
round to the next, the topology changes are relatively small due to the short update
interval. We leverage this observation to further improveMixer’s performance without
sacrificing communication reliability.

Mixer rounds are independent of each other. Each node has no information about its
neighborhood at the beginning of a round. This changes during a round with each
packet received, allowing better and better transmit decisions to be made, and thus the
message exchange to be finished more quickly. Instead of acquiring this information
from scratch in each round, we extendMixer to allow neighborhood information to
carry over from one round to the next. Such warmstarted nodes can communicate
more effectively right from the beginning of a round. Experiments with the same
testbed setup as before show that warmstarting nodes reduces latency by 12–40 %,
with a median of 31 % (see Figure 6.5).

132 Chapter 6. Scaling Beyond Bandwidth Limitations

6.5.2 Support for Predictive Triggering

Having established an efficient and reliable communication support for wireless control,
we now turn to the core co-design questions from the perspective of the communication
system:

1) How to efficiently exchange the priorities computed by each agent within a
Mixer round?

2) How to schedule communication based on the priorities such that the network
bandwidth is used in the most effective way by allocating messages to the agents
with the highest need?

3) How to communicate efficiently when facing varying communication demands?

We propose novel Mixer protocol functionality to answer these three questions, as
discussed next.

Efficient exchange of priorities. With respect to their storage format the priorities
𝑃H
𝑖 (𝑘) are generally much smaller in size than the full state information 𝑥𝑖 (𝑘). The key
idea is to exploit this size advantage and use a part of the available network bandwidth
for the exchange of all priorities in eachMixer round, to enable using the remaining
network bandwidth in the most effective way.

The problem with this is that Mixer’s coding operations require that all messages
exchanged in a round must have the same size, thus, transmitting priorities and state
information as separate messages would completely eliminate the size advantage of
priorities. Instead, we extendMixer’s packet header and reserve space for a priority
aggregate, as shown in Figure 6.3. At the beginning of a round, each agent knows only
its own priority. During a round, agents aggregate priorities from all received packets
and embed the current aggregate into the packets they transmit. Since the aggregate
is part of every packet, it distributes independently of the𝑀 individual messages and
propagates quickly and reliably through the network.

To minimize the overhead introduced by the priority aggregate, a compact represen-
tation is needed. Importantly, the aggregate must contain information about the𝑀C

agents with the highest priority and whether all agents contributed to the aggregate,
as required by the distributed scheduling algorithm described below. We propose two
representations that satisfy these requirements. The first option is to concatenate all
𝑁 priorities in the aggregate. With𝑊𝑃 being the number of bits used for each priority
value, the required number of bytes 𝑆 for the aggregate of 𝑁 priority values is given
by

𝑆 = ⌈𝑁𝑊𝑃/8⌉ . (6.9a)

Alternatively, if 𝑁 ≫ 𝑀C, we achieve a more compact representation using

𝑆 = ⌈(𝑀C𝑊𝑃 +𝑀C⌈log2 𝑁 ⌉ + 𝑁)/8⌉, (6.9b)

6.5. Adaptive Communication System 133

which includes the 𝑀C highest priorities (𝑀C𝑊𝑃), together with the corresponding
agent IDs (𝑀C⌈log2 𝑁 ⌉), and one bit per node to verify that all agents have contributed
(𝑁). Based on the concrete scenario parameters (i.e.,𝑊𝑃 , 𝑀C, and 𝑁), our system
automatically choses the most compact representation.

Distributed scheduling. A schedule in our communication protocol is the mapping
of agents to the𝑀C available control messages, hence, it describes which agents are
allowed to send a control message in the next round. Agents derive the schedule based
on the final priority aggregate to which all agents have contributed, by selecting the
𝑀C agents with the highest need to send their state information. More formally, we
have that agent 𝑖 can send a message if its priority 𝑃H

𝑖 (𝑘) ∈ PL, where PL denotes the
set of the 𝑀C highest priorities, and if 𝑃H

𝑖 (𝑘) > 𝑃𝛿 for some user-defined threshold
𝑃𝛿 . How we deal with equality of priorities, a result of using quantization in a real
implementation, is described in Section 6.7.2.

As described in Section 6.4.3, the scheduling horizon 𝐻 depends on the number of time
steps the communication system needs to reschedule resources. In our system the
priority aggregate always determines the schedule for the next round, so 𝐻 = 1. In the
rare event that agent 𝑖 does not have the final aggregate at the end of a round, it is not
guaranteed that it can compute the correct global schedule and therefore the agent must
not send a message. Nevertheless, the agent participates in the communication round
like all other agents that have no message assigned to them. However, if 𝑃H

𝑖 (𝑘) ∈ PL,
the message assigned to agent 𝑖 is not used in the next round. Since messages and
priorities spread independently of each other, message loss has little to no effect on the
final priority aggregate. In our experiments, we did not record a single priority loss
and only one message loss, which shows the reliability of our communication system.

Reducing communication costs. AMixer round ends when all nodes have received
all𝑀 messages or the maximum duration of a round is reached. Since𝑀 is a parameter
set at compile-time, nodes expect the same number of messages in every round, which
suits periodic traffic. If the communication demand varies from round to round, then
𝑀 determines the maximum number of messages. Since nodes do not finish the round
before receiving𝑀 messages, the difference to the actual number of messages has to
be filled with empty messages. As a result, the original Mixer protocol (Chapter 2)
cannot translate a lower communication demand into energy savings.

To achieve energy savings if less than 𝑀 messages need to be sent in a round, we
extend Mixer so that nodes can mark unused messages instead of sending empty
messages. The idea is similar to the way the priority aggregate works. We aggregate
the information about unused messages and quickly distribute them in the network
independent of individual messages. To realize this, we can reuse a certain part of
Mixer’s packet header (i.e., the InfoVector) and switch each slot between its original
content and the information about unused messages, thus, adding no further overhead
to the transmitted packets.

134 Chapter 6. Scaling Beyond Bandwidth Limitations

Figure 6.6: Communication costs at different network bandwidth utilizations. The original
Mixer (baseline) cannot convert lower bandwidth utilization into energy savings. Enabling
nodes to mark unused messages (flexible) saves up to 40 % of the communication costs.

We evaluate the savings in terms of communication costs enabled by this modification
using the experimental setup from Section 6.5.1. Now, messages also contain the prior-
ity aggregate, and we enable the warmstart feature. We determine the communication
costs by measuring the average radio-on time across all nodes during a communication
round. Figure 6.6 plots for the original Mixer baseline and our approach, labeled
Flexible, the resulting communication costs when different fractions of the available
network bandwidth are used, from 1 used message out of 31 possible messages up to
31 used messages out of 31 possible messages. We can see that, by marking unused
messages, our Flexible approach achieves significant savings of up to 40 % compared
with the original Mixer baseline. As expected, the savings increase as the network
bandwidth utilization decreases.

The possibility to save energy can also be taken into account by the scheduling algo-
rithm. Since the communication need is announced one round in advance (𝐻 = 1),
the estimation error 𝑒 can also decrease until the next time step, whereby allocated
messages might no longer be needed. For this, every agent that is allocated a message
in the schedule derives 𝑃0

𝑖 (𝑘) (as shown in Figure 6.2) by setting𝐻 = 0 in (6.6) and (6.8).
If 𝑃0

𝑖 (𝑘) < 𝑃𝛿 , agent 𝑖 can skip the transmission and mark the message as unused to
save energy. The combined scheduling rule can be summarized as

^𝑖 (𝑘 + H + 1) = 1 ⇐⇒ 𝑃H
𝑖 (𝑘) ∈ PL ∧ 𝑃H

𝑖 (𝑘) > 𝑃𝛿 ∧ 𝑃0
𝑖 (𝑘 + H) > 𝑃𝛿 . (6.10)

Overall, this mechanism keeps the energy costs incurred by communication in propor-
tion to the communication demand.

6.6 Integration and Stability Analysis

The integration of our co-designed control and communication systems with respect
to their timely interaction and execution is key to meet CPS application requirements.
We briefly characterize implementation and timing aspects of our wireless embedded

6.6. Integration and Stability Analysis 135

system in Section 6.6.1, followed by a formal stability analysis of our integrated system
in Section 6.6.2.

6.6.1 Implementation Aspects

Hardware platform. We leverage a DPP that integrates an AP and a CP together with
the processor interconnect Bolt [166]. The AP executes all application tasks (sensing,
actuation, control) while the CP performs all communication tasks. Both processors
run in parallel, and the interconnect permits data exchange within formally verified
timing bounds [166]. AP and CP use ARM Cortex-M4F CPU cores running at 48 MHz
(MSP432P401R) and 64 MHz (nRF52840), respectively. The CP features a low-power RF
transceiver that implements the IEEE 802.15.4 and BLE PHYs.

Time synchronization. We use the start of a communication round as a global
reference time, which is estimated by all CPs in the network during communication.
Each CP propagates this reference time to its respective AP over a dedicated connection
between GPIO pins. By aligning all application tasks to the global reference time,
similar to Chapter 4, we ensure that the end-to-end delay and jitter among application
tasks (i.e., from sensing through control to actuation) is minimized [76]. The slightly
different estimates of the reference time by the CPs lead to jitter, which is, however,
upper bounded to the nominal length of a communication slot due to the design of
Mixer. For our BLE implementation and typical payload sizes, the jitter is on the order
of a few hundred microseconds.

6.6.2 Stability Analysis

While the individual agents can locally stabilize themselves, they are coupled through
a common control objective. Introducing couplings can destabilize otherwise stable
subsystems [105, Ch. 8], even under periodic communication. Moreover, we also
consider larger CPS where the limited number of control messages leads to an over-
loaded system. All these aspects imply that stability of the overall system does not
follow straightforwardly from the stability of individual systems and, thus, needs to be
analyzed. For the stability analysis, we make the following assumptions.

Jitter. The system model (6.1) implicitly assumes that the time step 𝑘 → 𝑘 + 1 (i.e., the
update interval) is constant, implying that jitter is neglected. One time step corresponds
to the time between the start of consecutive communication rounds. The CPS scenarios
described in Section 6.1 use update intervals of tens to hundreds of milliseconds. As a
rule of thumb, jitter that is below 10 % of the nominal update interval does not need
to be compensated for [28, p. 48]. As discussed in Section 6.6.1, the jitter of our CPS
architecture is way below that threshold, justifying our assumption.

Message loss. For the following analysis, we assume that message loss is i.i.d.. Given
the extremely high reliability of Mixerwith hardly anymessage losses during hundreds

136 Chapter 6. Scaling Beyond Bandwidth Limitations

of hours of indoor and outdoor experiments (see Chapter 2 2), the temporal correlation
among those very few message losses is practically negligible. This also justifies our
second assumption: we assume that the message loss probability is below 100 %, a
theoretical corner case that would prohibit any stability analysis.

System and control design. For notational convenience, we assume homogeneous
systems with equal choices of 𝑄 and 𝑅 matrices for controller design, that is, 𝐴𝑖 = 𝐴 𝑗 ,
𝐵𝑖 = 𝐵 𝑗 , and 𝐹𝑖 𝑗 = 𝐹 𝑗𝑖 for all 𝑖, 𝑗 . We, thus, drop the index 𝑖 for 𝐴 and 𝐵 in this section
and comment on how the analysis would need to be adapted for the heterogeneous case
in the end of the section. The controller matrix is designed such that both the overall
system and the individual closed-loop systems 𝐴 + 𝐵𝐹𝑖𝑖 would be stable under periodic
communication without message loss. For homogeneous systems, the system with the
largest Mahalanobis distance from the origin will also have the highest priority.

We define stability of the system in terms of boundedness of its second moment
(cf. [146]):

Definition 2 (Mean square boundedness). The system (6.1) is mean square bounded
(MSB) if there exist 𝜖 and 𝜌 (𝜖) such that for a given 𝜖 > 𝜖 > 0, ∥𝑥 (0)∥2 < 𝜌 implies
sup𝑘≥0 E[∥𝑥 (𝑘)∥22] ≤ 𝜖 .

With this definition, we can state the following theorem:

Theorem 4. Consider a system consisting of 𝑁 homogeneous agents with stochastic
LTI dynamics as in (6.1), a transmission channel with 0 < 𝑀C < 𝑁 resources per
communication round, the control law (6.2), estimation strategy (6.3), and scheduling
law (6.10) with 𝐻 = 1. Then, the system is MSB.

The proof mainly follows the proofs in [116, 117]. We here provide some intuition
and comment on the main differences to [116, 117] while we defer the formal proof to
Appendix 6.A.

As the controller is designed so that the overall closed-loop system is stable under
reliable, periodic communication, potential instability stems from the estimation error.
Thus, we show that we can derive upper bounds for this error in a mean-squared sense,
which ensures MSB of the overall system, as we show in Appendix 6.A.

Compared to [116, 117], we assume a deterministic scheduling policy. While in [116,
117] the agent with the largest error might not receive a slot due to the probabilistic
scheduling policy, this cannot happen in our design. Therefore, we can obtain tighter
upper bounds on the estimation error. Further, since we assume message loss to be
i.i.d., we do not need to guarantee that a certain amount of messages is delivered
successfully within a given time interval.

Remark 1. For homogeneous agents, we arrange agents according to their errors, since
the system with the largest error has the largest Mahalanobis distance. This simplifies

2In Chapter 2, this has been demonstrated with the IEEE 802.15.4 PHY. We have recorded only one
message loss in about 50 000 messages in our experiments with the BLE 2 Mbps PHY.

6.7. Testbed Experiments 137

notation since we can directly consider the errors. However, for heterogeneous agents,
where the errors may not be comparable, we can derive an upper bound on the probability
of exceeding the threshold, which implies an upper bound on the error. Thus, considering
heterogeneous agents comes at no additional complexity, except for notation.

Remark 2. Theorem 4 guarantees that the second moment is bounded but makes no
statements about the actual bound. Explicitly computing this bound would enable to assess
the performance of the considered setup, which clearly depends on various parameters, such
as the number of control messages𝑀C. This can be used to derive adjustable performance
bounds. For a more detailed discussion, we refer the reader to [117]. How to extend the
analysis to scenarios without local stabilization is discussed in Remark 3 in Appendix 6.A.

6.7 Testbed Experiments

This section provides measurements from a 20-agent wireless CPS testbed used to
study both the effectiveness of our co-design approach and the interaction of predictive
triggering with the communication system. Evaluating such approaches on real-world
testbeds is essential to build trust in the proposed solutions [101]. In our experiments,
we find:

• The priorities determined by the predictive triggering framework reasonably
reflect the need for communication depending on the difference between esti-
mated and actual system states. The communication system effectively allocates
the available network bandwidth to the agents with the highest need.

• Compared to a baseline using periodic control, our approach reduces control
costs as defined in (6.4) by up to ≈19 %, leading to a better synchronization of
the 20 agents in our CPS testbed.

6.7.1 Wireless Cyber-Physical Systems Testbed

Characteristics. We use a wireless CPS testbed with 20 agents that spans an area of
about 20 m by 30 m in our robotic lab. Figure 6.7a shows the locations of the agents in
our testbed. Each agent consists of a wireless node (see Section 6.6.1 and Figure 6.7c)
and a physical system.

Wireless network. We use the 2 Mbps BLE mode and set the transmission power to
−8 dBm. With these settings, paths between wireless nodes are between 1 and 3 hops
in length. Communication in our testbed is subject to interference from other wireless
transmitters operating in the 2.4 GHz band and radiation of electrical components
from co-located robotic experiments.

Physical systems. We use cart-pole systems as physical systems (see Figure 6.7b
and Figure 6.7d) because they exhibit fast dynamics and are widely studied in control
theory [23]. In particular, we aim at stabilizing the pole attached to the cart at a
pole angle of \ = 0◦. This is known as the inverted pendulum, which can be well

138 Chapter 6. Scaling Beyond Bandwidth Limitations

(a) Testbed deployment (20 m by 30 m) including 6 agents with different
types of real physical systems and 14 agents with simulated physical
systems. Heterogeneity makes distributed control more challenging.

(b) Cart-pole system. Controlled
cart movements can stabilize the
pole in an upright position.

(c) Wireless node. Dual-processor platform (DPP).

(d) Self-built system on the left side and off-the-shelf system on the right side. The two types
of real physical systems offer different dynamics.

Figure 6.7: Wireless CPS testbed with 20 agents. Each agent consists of a wireless node
(DPP) and a real or simulated cart-pole system as physical system. The wireless nodes form

a three-hop network.

6.7. Testbed Experiments 139

approximated by an LTI system for small deviations from the unstable equilibrium
(i.e., sin(\) ≈ \). The state 𝑥 (𝑘) of the system consists of the pole angle \ (𝑘), the cart
position 𝑠 (𝑘), and their respective derivatives. We measure \ (𝑘) and 𝑠 (𝑘) using angle
sensors, and estimate \̇ (𝑘) and 𝑠 (𝑘) using finite differences and low-pass filtering. The
control input 𝑢 (𝑘) is the voltage applied to the motor of the cart, steering the cart’s
movement speed and direction.

As shown in Figure 6.7a, our testbed features 6 real cart-pole systems connected to the
AP of nodes 2, 3, 5–8, and 14 simulated cart-pole systems by running simulation models
on the AP of nodes 1, 4, 9–20. The simulated systems allow us to scale up the number of
agents in our testbed, given the hefty price tag of real cart-pole systems. In particular,
we use 2 off-the-shelf cart-pole systems from Quanser (agent 7 and 8) and 4 cart-pole
systems we built in our lab (agent 2, 3, 5, and 6). As a result, we have a testbed with
three types of physical systems with different properties and communication demands.
In general, heterogeneity makes distributed control more challenging compared to
homogeneous systems [106].

6.7.2 Scenario and Settings

Control task. We consider a scenario where the objective and timescales of the
distributed control task are similar to, for example, coordination in drone swarms.
Drones have to locally stabilize their flight and, additionally, exchange information to
coordinate their movements in order to keep a certain formation or avoid crashing into
each other. Similarly, all 𝑁 = 20 agents in our testbed have to locally stabilize their
poles in an upright position at cart position 𝑠 = 0 cm (i.e., in the middle of their tracks)
and to synchronize their cart positions. Synchronizing their cart position requires
that all agents know the states of all others. Stabilization, however, depends only on
information every node has locally. Thus, local update intervals are not bound to the
communication delay and can be shorter, making stability less critical. In our setup, we
run the local control loop with an update interval of 10 ms. For synchronization, agents
exchange information over the multi-hop wireless network with a communication
period of 100 ms.

As discussed in Section 6.4.3, systems need to exchange their states because the state
predictions using the deterministic model will deviate from the real-world over time.
However, in reality, disturbances, such as a gust of wind affecting a subset of drones,
can create even more significant deviations. To include this aspect in our experiments,
we let all carts start at 𝑠 = 0 cm but purposely fix the cart position of one of the
simulated systems (agent 11) at 𝑠 = 20 cm half-way through an experiment.

Comparison approaches. In addition to the control task, high-priority application
traffic, such as image data recorded by drones in remote surveillance [61], occupies
most of the available wireless communication bandwidth. Specifically, every commu-
nication round, 𝑀A = 18 messages are reserved for the application. The remaining
network bandwidth is used by the agents to exchange the information required for

140 Chapter 6. Scaling Beyond Bandwidth Limitations

synchronization. All messages have a payload size of 32 B. We compare our approach
against periodic control. These two differ in the number of𝑀C messages and the way
these messages are assigned to the agents. Further details regarding the calculation
of 𝑀C is provided in Appendix 6.B. To allow for a fair comparison between the two
approaches, both useMixer with the enhancements described in Section 6.5.1. The
mechanisms from Section 6.5.2, designed to support predictive triggering, are only
used in our predictive approach. ETC and STC approaches are not considered here,
because it is unclear how they can systematically address overload situations.

Periodic: Periodic control introduces no overhead. Thus, the remaining network
bandwidth can be used for𝑀C = 3 messages per communication round in our scenario.
Since there are 𝑁 = 20 agents that want to communicate each round, the system is
overloaded. The best we can do with periodic control is to allocate the𝑀C messages in
a predetermined round-robin fashion; that is, each agent is allocated a control message
every 7th communication round, effectively sharing its state every 700 ms.

Predictive: This represents the novel predictive triggering approach presented in this
work, where in each communication round the𝑀C agents with the highest priorities
are allowed to share their states. To efficiently compute priorities on our embedded
hardware we approximate (6.8) with Chernoff bounds [34, Lemma 2.2]. With a contin-
uous priority measure, the probability that two nodes transmit the same priority is 0.
In an implementation, however, priorities must be quantized. We choose𝑊𝑃 = 4 bit
wide priorities, which lets us distinguish 16 different values. If there is a tie, we sort
the nodes by their IDs in ascending order. With the priority aggregate in the packet
header (see Figure 6.3) the size of all packets increases, which reduces the network
bandwidth available for the control messages. In our experiments, this reduces𝑀C to 2
control messages per round with an aggregate overhead of 𝑆 = 5 B (see (6.9)). Further,
we use a threshold of 𝑃𝛿 = 0.5 and choose 𝑒max = (0.03, 0.03, 0.1, 0.3)ᵀ as the maximum
error to derive the priorities (cf. Section 6.4.3). In case any individual error state grows
above the corresponding entry in 𝑒max in terms of its absolute value, we transmit the
highest priority.

Controller design. For both approaches, we set all 𝑄𝑖 matrices as suggested in [141],
𝑅 = 0.1, and set the first entry of 𝑄sync to 10 and all others to 0 to express our desire to
synchronize the cart positions. We adopt the system matrices provided in [141] for the
off-the-shelf systems and the ones from [120] for the self-built systems. The respective
matrices are used for controller design and estimation. The simulated systems also
use the matrices from [141], but we add normally distributed noise with a standard
deviation of 10−4.

6.7.3 Results

In the following, we discuss the results for our predictive triggering approach and
periodic control. The results are representative for our concrete scenario and may
differ in other cases. Due to the design of the physical systems used, in particular the

6.7. Testbed Experiments 141

(a) Periodic. Each agent is allocated the same number of messages regardless of the disturbance.

(b) Predictive. Messages are allocated according to the agents’ needs, addressing the disturbance.

Figure 6.8: Total number of control messages allocated to each agent throughout the
experiments for the predictive and periodic approach. A disturbance is added to agent 11 in
the middle of the experiments. Compared to the periodic approach, the predictive approach

assigns the control messages based on the current state of the agents.

limited track length of the carts, the estimation error 𝑒 is restricted to a relatively small
value, which favors the periodic control approach. In scenarios where 𝑒 can grow
larger or is potentially unbounded, we expect higher control performance gains with
our predictive approach.

Resource allocation. In Figure 6.8 we show the total number of control messages
allocated to each agent throughout one characteristic experiment for each approach.
We begin by discussing the first half of the experiment, before the disturbance, and
continue with the second half afterwards.

Before the disturbance: With the periodic approach, every agent gets the same share
of messages. Using the predictive approach, instead, some agents get to communicate
significantly more or less often than others. This is because the predictive approach
dynamically allocates messages to agents based on their actual needs. We see that
agents with simulated systems (1, 4, 9–20) rarely get messages allocated (≤ 12 mes-
sages per agent) because their states can be predicted more accurately. The states of
agents with real systems (2, 3, 5–8) cannot be predicted as accurately as those of the
simulated systems, so they need to communicate their states more often to achieve a
better synchronization. This higher need is effectively accounted for by the predictive
approach, as visible from the many messages allocated to these agents.

142 Chapter 6. Scaling Beyond Bandwidth Limitations

Figure 6.9: Per agent distribution of the transmitted priorities for a selected set of agents
using the predictive approach. Systems that are more difficult to predict will transmit high
priorities more often. Simulated systems transmit mostly low priorities, except agent 11 that

is disturbed during half of the experiment.

During the disturbance: In the middle of the experiment the position of agent 11 is fixed
at 𝑠 = 20 cm, which suddenly leads to very inaccurate state predictions for this agent.
This does not affect the message allocation in the periodic approach and every agent
still gets the same amount of messages. The predictive approach, on the other hand,
adapts to the situation by allocating agent 11 the most messages among all agents
(> 1000 messages) during the second half of the experiment. The instantaneous trigger,
that is, 𝑃0

𝑖 (𝑘 + H) > 𝑃𝛿 in (6.10), reduces the number of control messages by about
1–2 %. More savings are expected when the ratio𝑀C/𝑁 increases.

Priority distribution. In the predictive approach, the decision about which agent is
allocated a message is based on the communication needs, which is reflected by the
transmitted priorities. Figure 6.9 shows how often each priority was transmitted during
the experiment, for a selected set of agents. The selection includes one representative
agent for each type of pendulum (self-built, Quanser, simulated), and additionally
the disturbed agent 11. Each histogram indicates how often the respective agent has
transmitted low to high priorities. Agent 2 and 8 have different types of real physical
systems (self-built vs. off-the-shelf). Although both are cart-pole systems and, thus,
have similar dynamics, their individual physical characteristics are different, resulting
in different communication needs. Agent 8 transmits higher priorities more often
compared to agent 2, implying that the state of agent 8 is less predictable. Agents
11 and 16 have simulated systems, so they show very similar communication needs.
However, as soon as we manipulate the cart position of agent 11, its predictions become
inaccurate, and it chooses higher priorities more often; in fact, during the disturbance, it
chooses the highest priority most often among all agents. Consequently, the predictive
approach allocates amessage to agent 11 in almost every communication round, helping
the other agents to better synchronize the cart positions. The priority distribution of
the different pendulum types is so characteristic across all our experiments that the
type of each pendulum can be identified from this alone. Moreover, these distributions
reflect the different communication needs which also shows the heterogeneity of our
physical systems.

Control performance. Figure 6.10 shows the control performance by evaluating
the cost function (6.4) in each time step. The results are computed using a moving

6.A. Proof of Theorem 4 143

Figure 6.10: Control cost over time, averaged across multiple runs per approach. During
the disturbance (starting at 120 s), the predictive approach decreases the control cost by

around 19 % due to the adaptive allocation of communication resources.

average with a window size of 50 time steps (5 s), and averaged over 3 different runs
per approach. In the first half of the experiment, both approaches are close together
with ≈5 % lower cost for the predictive approach. The distance increases in the second
half of the experiments, during the disturbance, where the control cost of our approach
is ≈19 % lower, because it adaptively allocates more messages to the disturbed agent 11,
thus enabling a better synchronization. This improvement is achieved even though the
periodic approach can transmit one control message more per communication round
(𝑀C = 3) compared to the predictive approach (𝑀C = 2).

In our experiments, the network bandwidth reserved for application traffic is relatively
high (≈85 %). Conversely, the bandwidth remaining for control messages is small. As
a result, the overhead of our predictive approach reduces 𝑀C from 3 (with periodic
control) to 2, which is 33 % less. However, the overhead depends on the concrete
experiment settings. For example, in the same scenario but with𝑀A = 10 messages,
the periodic approach could use𝑀C = 11 control messages and the predictive approach
𝑀C = 9 control messages, with an aggregate overhead of 𝑆 = 10 bytes. In this case, the
number of control messages is only reduced by 18 %.

6.A Proof of Theorem 4

Here, we provide the proof of Theorem 4. We start with some preliminaries that will
be needed to ensure that the estimation errors 𝑒𝑖 (𝑘) and 𝑒𝑖 𝑗 are well-behaved, what
lets us conclude MSB of the overall system.

6.A.1 Preliminaries

To study the behavior of the estimation error, we employ the concept of 𝑓 -ergodicity.
Generally, a stochastic process as (6.1) is said to be ergodic if its sample average and
time average coincide. The notion of 𝑓 -ergodicity is stronger a stronger notion and is
used in the context of Markov chains. Intuitively, if a process is 𝑓 -ergodic, the Markov
chain is stationary and the process itself converges to an invariant finite-variance
measure over the entire state-space. More formally:

144 Chapter 6. Scaling Beyond Bandwidth Limitations

Definition 3 ([123, Ch. 10]). Let the Markov chain Φ = (Φ(0), Φ(1), . . .) evolve in the
state-space X, which is equipped with some known 𝜎-algebra B(X). The Markov chain
Φ is said to be positive Harris recurrent if

1) a non-trivial measure a (𝐵) > 0 exists for a set 𝐵 ∈ B such that for all Φ(0) ∈ X,
𝑃 (Φ(𝑘) ∈ 𝐵, 𝑘 < ∞) = 1 holds.

2) Φ admits a unique invariant probability measure.

Definition 4 ([123, Ch. 14]). Let 𝑓 ≥ 1 be a real-valued function in R𝑛 . A Markov chain
Φ is said to be 𝑓 -ergodic, if

1) Φ is positive Harris recurrent with unique invariant measure 𝜋 ,

2) the expectation 𝜋 (𝑓) =
∫
𝑓 (Φ(𝑘))𝜋 (dΦ(𝑘)) is finite,

3) lim𝑘→∞∥𝑃𝑘 (Φ(0), ·) − 𝜋 ∥ 𝑓 = 0 for every initial value Φ(0) ∈ X, where ∥a ∥ 𝑓 =

sup |𝑔 | ≤ 𝑓 |a (𝑔) |.

We further define a drift function:

Definition 5 ([117]). Let 𝑉 : R𝑛 → R≥0, and Φ be a Markov chain. For any measurable
function 𝑉 , the drift Δ𝑉 (·) is

Δ𝑉 (Φ(𝑘)) ≔ E[𝑉 (Φ(𝑘 + 1)) | Φ(𝑘)] −𝑉 (Φ(𝑘)), (6.11)

with Φ(𝑘) ∈ R𝑛 .

We can then establish f-ergodicity.

Theorem 5 (𝑓 -Norm Ergodic Theorem [123, Ch. 15]). Suppose that the Markov chain Φ
is𝜓 -irreducible and aperiodic and let 𝑓 (Φ(𝑘)) ≥ 1 a real-valued function in R𝑛 . If a small
set D and a non-negative real-valued function 𝑉 exist such that Δ𝑉 (Φ(𝑘)) ≤ −𝑓 (Φ(𝑘)),
for every Φ(𝑘) ∈ R𝑛 \D, and Δ𝑉 < ∞ for Φ(𝑘) ∈ D, the Markov chain Φ is 𝑓 -ergodic.

The Markov chain defined through the dynamical system (6.1) is both aperiodic and
𝜓 -irreducible. This is the case since the noise distribution 𝑣𝑖 (𝑘) is assumed to be
absolutely continuous with an everywhere-positive density function. Thus, every
subset of the state space X is reachable within one time-step. Here,𝜓 is a non-trivial
measure on R𝑛 . Further, all compact subsets of an LTI system are small sets [123,
Ch. 5].

6.A.2 Stochastic Stability

Equipped with the concepts from the previous section, we now present the stability
proof. For this, we first show that the Markov chain induced by the estimation errors
𝑒𝑖 (𝑘) and 𝑒𝑖 𝑗 is 𝑓 -ergodic and then show that this implies MSB of the overall system.

6.A. Proof of Theorem 4 145

For analyzing the ergodicity of the error Markov chain we start with defining the
function 𝑉 as the sum of all squared Mahalanobis distances from the equilibrium, i.e.,

𝑉 (𝑒 (𝑘)) =
𝑁∑︁
𝑖=0
∥𝑒𝑖 (𝑘)∥2M +

𝑁∑︁
𝑖, 𝑗=0,𝑖≠𝑗

∥︁∥︁𝑒𝑖 𝑗 (𝑘)∥︁∥︁2
M. (6.12)

Ideally, we would now seek to guarantee Δ𝑉 (𝑒 (𝑘)) to be negative at every time
step to invoke 𝑓 -ergodicity. However, for an event-triggered strategy and a lossy
communication channel, this is not possible. We may have rounds, in which none of
the agents seeks to communicate as all their errors are low enough. Also, we may have
agents that want to communicate but messages being lost. In both cases, the drift may
become positive. Thus, we modify the drift definition from (6.11),

Δ𝑉 (𝑒 (𝑘), 𝐾) = E[𝑉 (𝑒 (𝑘 + 𝐾)) | 𝑒 (𝑘)] −𝑉 (𝑒 (𝑘)) . (6.13)

As discussed in [123, Ch. 19], Theorem 5 can also be used to show 𝑓 -ergodicity for
such modified drift definitions. Here, we choose 𝐾 = ceil(2𝑁 /𝑀C), where ceil is a
function rounding its argument to the next higher integer. The incentive of this is to
have an interval that allows each agent to communicate once. Since agents announce
their communication needs in advance and only learn about whether they received a
slot in the round they receive it, it might happen that an agent is awarded two slots in
a row. To also allow for communication of all agents in such cases, we take two times
the minimum interval.

In the absence of message loss, we have 𝑒𝑖 (𝑘) = 𝑒𝑖 𝑗 (𝑘) for all 𝑘 and 𝑗 . In the following,
we, thus, first derive bounds for 𝑒𝑖 (𝑘) and then show how we deal with errors due to
message loss. Note that the estimation error 𝑒𝑖 (𝑘 + 𝐾) can be written as a function of
𝑒𝑖 (𝑘),

𝑒𝑖 (𝑘 + 𝐾) = �̃�
𝐾−𝑘

𝑒𝑖 (𝑘)
𝐾∏︂
𝑛=𝑘

(1 − ^𝑖 (𝑛)𝜙𝑖 (𝑛))

+
𝐾−1∑︁
𝑛=𝑘

�̃�
𝐾−𝑘−1

𝑣𝑖 (𝐾 − 𝑛)
𝐾∏︂

𝑟=𝑛+2
(1 − ^𝑖 (𝑟)𝜙𝑖 (𝑟)),

(6.14)

where �̃� = 𝐴 + 𝐵𝐹𝑖𝑖 .

We now seek to upper bound the expected squared Mahalanobis distance of 𝑒𝑖 (𝑘).
Generally, such bounds can be derived as follows:

Lemma 4. We can upper bound E[∥𝑒𝑖 (𝑘 + 1)∥2M | 𝑒𝑖 (𝑘)] in case of no communication
by

E[∥𝑒𝑖 (𝑘 + 1)∥2M | 𝑒𝑖 (𝑘)] ≤
∥︁∥︁�̃�∥︁∥︁2

2∥𝑒𝑖 (𝑘)∥
2
M + Tr(𝐼𝑛) . (6.15)

146 Chapter 6. Scaling Beyond Bandwidth Limitations

Proof. Following (6.14), we have3

E[∥𝑒𝑖 (𝑘 + 1)∥2M | 𝑒𝑖 (𝑘)] = E[
∥︁∥︁�̃�𝑒𝑖 (𝑘) + 𝑣𝑖 (𝑘)∥︁∥︁2

M | 𝑒𝑖 (𝑘)] . (6.16)

Leveraging that the noise has zero mean and using the Cauchy-Schwarz inequality,
we arrive at

E[
∥︁∥︁�̃�𝑒𝑖 (𝑘) + 𝑣𝑖 (𝑘)∥︁∥︁2

M | 𝑒𝑖 (𝑘)]

= E[
∥︁∥︁�̃�𝑒𝑖 (𝑘)∥︁∥︁2

M | 𝑒𝑖 (𝑘)] + E[∥𝑣𝑖 (𝑘)∥
2
M]

≤
∥︁∥︁�̃�∥︁∥︁2

2 E[∥𝑒𝑖 (𝑘)∥
2
M | 𝑒𝑖 (𝑘)] + Tr(Σ−1

vi Σvi)

=
∥︁∥︁�̃�∥︁∥︁2

2∥𝑒𝑖 (𝑘)∥
2
M + Tr(𝐼𝑛). □

We now prove 𝑓 -ergodicity of the Markov chain induced by 𝑒𝑖 .

Theorem 6. Consider the setting from Theorem 4. Then, for any 𝛿 ∈ R≥0, the Markov
chain �̃̂�𝑖 (𝑘) = [𝑒1(𝑘), . . . , 𝑒N(𝑘)]ᵀ is 𝑓 -ergodic.

Proof. We let the dynamical system evolve over the time interval [𝑘, 𝑘 + 𝐾] and study
all possible outcomes. For this, we partition the agents in mutual exclusive subsets:

𝑐1 The agent has or has not transmitted over [𝑘, 𝑘 + 𝐾] and ∥𝑒𝑖 (𝑘 + 𝐾 − 1)∥2M ≤ 𝛿 ;

𝑐2 The agent has transmitted successfully at least once over [𝑘, 𝑘 + 𝐾] and
∥𝑒𝑖 (𝑘 + 𝐾 − 1)∥2M > 𝛿 ;

𝑐3 The agent has never been assigned a slot over [𝑘, 𝑘 +𝐾] and ∥𝑒𝑖 (𝑘 + 𝐾 − 1)∥2M >

𝛿 .

We now derive upper bounds for all cases. For case 𝑐1, we know that the estimation
error at the last time instant was smaller than the threshold 𝛿 . Thus, we can use this
and Lemma 4 to arrive at

E[∥𝑒𝑖 (𝑘 + 𝐾)∥2M | 𝑒𝑖 (𝑘)] ≤ 𝛿
∥︁∥︁�̃�∥︁∥︁2

2 + Tr(𝐼𝑛) . (6.17)

For case 𝑐2, assume that the last transmission instant was at 𝑘 = 𝑟 . Thus, we know that
at 𝑘 = 𝑟 the error was reset to 0 and obtain

E[∥𝑒𝑖 (𝑘 + 𝐾)∥2M | 𝑒𝑖 (𝑘)] ≤
𝐾∑︁
𝑠=𝑟

Tr(𝐼𝑛)
∥︁∥︁∥︁�̃�𝐾−𝑠∥︁∥︁∥︁2

2
. (6.18)

For case 3, we consider two subcases:

𝑐3a Over [𝑘, 𝑘 + 𝐾], for at least one 𝑘 ′ we had ∥𝑒𝑖 (𝑘 ′)∥2M ≤ 𝛿 ;
3Note that here we ignore the additional information that if the system does not receive a commu-

nication slot, its error must have been lower than that of the others. This “negative information” [159]
could be used to arrive at sharper bounds.

6.A. Proof of Theorem 4 147

𝑐3b Over [𝑘, 𝑘 + 𝐾], we had ∥𝑒𝑖 (𝑘 ′)∥2M > 𝛿 for all 𝑘 ′.

For case 𝑐3a, assume that 𝑘 = 𝑟 was the last time we had ∥𝑒𝑖 (𝑘 ′)∥2M ≤ 𝛿 . Then, we have,
again using Lemma 4,

E[∥𝑒𝑖 (𝑘 + 𝐾)∥2M | 𝑒𝑖 (𝑘)] ≤ 𝛿
∥︁∥︁∥︁�̃�𝐾−𝑟∥︁∥︁∥︁2

2
+
𝐾−1∑︁
𝑠=𝑟

Tr(𝐼𝑛)
∥︁∥︁∥︁�̃�𝐾−𝑠−1

∥︁∥︁∥︁2

2
. (6.19)

For case 𝑐3b, we have agents whose error was above the threshold 𝛿 in every time-step,
but never got a slot. As the scheduling rule always awards resources to the agents with
the highest error, we can upper bound the error of agents in 𝑐3b with the worst-case
error of the agents in 𝑐2,

E[∥𝑒𝑖 (𝑘 + 𝐾)∥2M | 𝑒𝑖 (𝑘)] ≤ max
𝑖∈𝑐2
E[∥𝑒𝑖 (𝑘 + 𝐾)∥2M | 𝑒𝑖 (𝑘)] . (6.20)

The drift can now be upper bounded as

Δ𝑉 (�̃̂�𝑖 (𝑘), 𝐾) ≤
∑︁

𝑖∈𝑐1,𝑐2,𝑐3

E[∥𝑒𝑖 (𝑘 + 𝐾)∥2M | 𝑒𝑖 (𝑘)] −𝑉 (𝑒 (𝑘))

≤
∑︁
𝑖∈𝑐1

(︂
𝛿
∥︁∥︁�̃�∥︁∥︁2

2 + Tr(𝐼𝑛)
)︂
+

∑︁
𝑖∈𝑐2

𝐾∑︁
𝑛=𝑟𝑖

Tr(𝐼𝑛)
∥︁∥︁∥︁�̃�𝐾−𝑛∥︁∥︁∥︁2

2

+
∑︁
𝑖∈𝑐3a

(︄
𝛿

∥︁∥︁∥︁�̃�𝐾−𝑟∥︁∥︁∥︁2

2
+
𝐾−1∑︁
𝑛=𝑟

Tr(𝐼𝑛)
∥︁∥︁∥︁�̃�𝐾−𝑛−1

∥︁∥︁∥︁2

2

)︄
+

∑︁
𝑖∈𝑐3b

max
𝑗∈𝑐2

⎛⎜⎝
𝐾∑︁
𝑛=𝑟 𝑗

Tr(𝐼𝑛)
∥︁∥︁∥︁�̃�𝐾−𝑛∥︁∥︁∥︁2

2

⎞⎟⎠ −𝑉 (𝑒 (𝑘))
= Z −𝑉 (�̃̂�𝑖 (𝑘)), (6.21)

where Z represents all bounded terms stemming from cases 𝑐1, 𝑐2, and 𝑐3. We can
then define 𝑓 (�̃̂� (𝑘)) = 1 + 𝜖𝑉 (�̃̂� (𝑘)), with 𝜖 ∈ (0, 1). Since 𝑉 (�̃̂� (𝑘)) ≥ 0, it follows
that 𝑓 (�̃̂� (𝑘)) ≥ 1. As 𝑣 (�̃̂� (𝑘)) grows with �̃̂� (𝑘) while Z is constant, we can further
find a small set D and an 𝜖 such that Δ𝑉 (𝑒 (𝑘), 𝐾) ≤ −𝑓 , which proves 𝑓 -ergodicity
according to Theorem 5 in the absence of message loss. □

With this, we have shown 𝑓 -ergodicity of �̃̂�𝑖 (𝑘). However, there might, due to message
loss, still be a divergence between 𝑒𝑖 (𝑘) and 𝑒𝑖 𝑗 (𝑘), that is, the estimates that other
agents have about agent 𝑖’s state.

Corollary 1. Consider the same setting as in Theorem 6. Then, the Markov chain
𝑒= [𝑒1(𝑘), . . . , 𝑒1N, 𝑒21, . . . , 𝑒N(𝑘)]ᵀ is 𝑓 -ergodic under i.i.d. message loss.

Proof. First, assume that only messages of agent 𝑖 might be lost, but not those of other
agents. Then, we can account for lost messages, following the strategy of [116], by
extending the horizon until the next successful message transmission of agent 𝑖 . That

148 Chapter 6. Scaling Beyond Bandwidth Limitations

is, we consider 𝑘 → 𝑘 + 𝐾 +𝑚∗ instead of 𝑘 → 𝑘 + 𝐾 . We then have

E[
∥︁∥︁𝑒𝑖 𝑗 (𝑘 + 𝐾 +𝑚∗)∥︁∥︁2

M | 𝑒𝑖 𝑗 (𝑘)] ≤ Tr(𝐼𝑛) . (6.22)

Thus, for any finite𝑚∗, the estimation error is bounded. Now, consider the case𝑚 →∞
without a single message being transmitted successfully. Due to the i.i.d. property of
message loss, the probability of losing𝑚c messages in a row is (1 − 𝑝c)𝑚c , where 𝑝c is
the probability of successfully transmitting a message. Thus, we have

E[
∥︁∥︁𝑒𝑖 𝑗 (𝑘 + 𝐾 +𝑚)∥︁∥︁2

M | 𝑒𝑖 𝑗 (𝑘))] ≤

(1 − 𝑝c)𝑚c

(︄∥︁∥︁𝑒𝑖 𝑗 (𝑘)∥︁∥︁2
M

∥︁∥︁∥︁�̃�𝐾+𝑚∥︁∥︁∥︁2

2
+
𝐾+𝑚−1∑︁
𝑛=𝑘

Tr(𝐼𝑛)
∥︁∥︁∥︁�̃�𝐾−𝑛−1

∥︁∥︁∥︁2

2

)︄
. (6.23)

The variable𝑚c here denotes the amount of times agent 𝑖 tried to transmit its state
in the interval 𝑘 → 𝑘 + 𝐾 +𝑚. Agent 𝑖 competes for a slot, if ∥𝑒𝑖 (𝑘)∥M > 𝛿 for some
𝑘 and if it gets a slot the error is reset. Thus, the time at which 𝑒𝑖 (𝑘) exceeds the
threshold 𝛿 can be interpreted as a stopping time, which has finite expected value [57,
Section 2]. Therefore, agent 𝑖 will infinitely often compete for slots as𝑚 → ∞. The
same holds for all other agents and since we assume homogeneous agents, each will
be assigned the same amount of slots as𝑚 →∞ due to the law of large numbers. In
conclusion, we have𝑚c →∞ as𝑚 →∞. As we further have

∥︁∥︁�̃�∥︁∥︁
2 < 1 and 𝑝c > 0 (cf.

the assumptions stated at the beginning of Section 6.6.2), (6.23) goes to zero as𝑚∗ goes
to infinity.

In practice, also other agents may lose messages. Then, the estimation error 𝑒𝑖 𝑗 might
grow not only because agent 𝑗 is missing information about agent 𝑖 , but also because
their information about other agents states might differ. Since the control input depends
also on these other states, this might lead to diverging predictions. In this case, we
need to add another term∑︁

ℓ∈Ω𝑖\{𝑖, 𝑗 }

∥︁∥︁𝑒𝑖ℓ (𝑘 + 𝐾 +𝑚∗ − 1) − 𝑒 𝑗 ℓ (𝑘 + 𝐾 +𝑚∗ − 1)
∥︁∥︁2

M

∥︁∥︁�̃�∥︁∥︁2
2 (6.24)

to (6.22). Also these terms can be bounded. In the beginning, we assume agents 𝑖
and 𝑗 to start with the same initial guess about agent ℓ , i.e., (6.24) is zero. We can now,
similar as above, extend the horizon such that at 𝑘 +𝐾 +𝑚∗, 𝑖 successfully transmitted
a message to 𝑗 and at some 𝑘 ′ within 𝑘 → 𝑘 +𝐾 +𝑚∗ both 𝑖 and 𝑗 successfully received
an update from ℓ . If then 𝑖 receives another update within at some 𝑘 ′′ > 𝑘 ′ while 𝑗 did
not, the error is bounded by

E[
∥︁∥︁𝑒𝑖ℓ (𝑘 + 𝐾 +𝑚∗) − 𝑒 𝑗ℓ (𝑘 + 𝐾 +𝑚∗)∥︁∥︁2

M | 𝑒𝑖 𝑗 (𝑘)] ≤
𝐾+𝑚∗∑︁
𝑠=𝑘 ′

Tr(𝐼𝑛)
∥︁∥︁∥︁�̃�𝐾+𝑚∗−𝑠∥︁∥︁∥︁ + 𝐾+𝑚∗∑︁

𝑠=𝑘 ′′
Tr(𝐼𝑛)

∥︁∥︁∥︁�̃�𝐾+𝑚∗−𝑠∥︁∥︁∥︁. (6.25)

The only possibility for the error to grow without bounds is for agent 𝑖 to receive an

6.B. Usage of the Network Bandwidth for Control 149

update of ℓ at some point while 𝑗 never receives one. For the same arguments as above,
the probability of that happening converges to zero faster than the error grows as𝑚
goes to infinity.

Thus, also in the case of message loss, the Markov chain is 𝑓 -ergodic. □

Remark 3. Under additional assumptions, the results can be extended to systems for
which

∥︁∥︁�̃�∥︁∥︁
2 > 1. In that case, it needs to be ensured that the probability of successfully

delivering a message grows faster than the estimation error.

With this, we can now prove stability of the overall system. For MSB following
Definition 2, we need E[∥𝑥 (𝑘)∥22] to be bounded. The individual system without
estimation error is exponentially stable, that is, its second moment would go to 0 at an
exponential rate. The second moment of the estimation error can be upper bounded,
independent of the state of the system, and also the noise variance is constant and
independent of the system’s state. That is, we essentially have an exponentially stable
system with a constant disturbance. Thus, also the second moment of the system state
is bounded [25, Ch. 7.6d].

6.B Usage of the Network Bandwidth for Control

The network bandwidth available for control traffic (𝑀C) depends on the commu-
nication demand of the application (𝑀A) and other scenario parameters such as the
required update interval. In our experiments in Section 6.7.2 the communication period
is 100 ms, and in each round𝑀A = 18 application messages are sent. In between two
communication rounds, each agent does computations based on the received data,
and provides the current priority and state information for the next communication
round. For these calculations and some additional buffer time we need to reserve 24 ms,
thus, 76 ms remain for the communication system to exchange data. Based on our BLE
experiments in Section 6.5.1, we can derive thatMixer needs on average about 9.5 slots
per message. In the 2 Mbps BLE mode it takes 4 µs to transmit one byte. With respect
to the packet size and other unavoidable delays (see Chapter 2), for example, switching
the radio from receive to transmit mode and vice versa, the resulting duration of one
Mixer slot is 380 µs. We can now calculate𝑀C, first for the periodic approach and then
for our predictive approach.

6.B.1 Periodic

The periodic approach has no additional overhead and 𝑀C can be straightforwardly
calculated with

communication_time ≥ (𝑀A +𝑀C) ∗ slots_per_message ∗ slot_time. (6.26)

Using the specific values of our experiment, we have

76 000 µs ≥ (18 +𝑀C) ∗ 9.5 ∗ 380 µs,

150 Chapter 6. Scaling Beyond Bandwidth Limitations

resulting in a value of𝑀C = 3 control messages per communication round.

6.B.2 Predictive

The relationships are a bit more complex in our predictive approach, because 𝑀C

and the duration of a slot in Mixer are interrelated. The slot_time term in (6.26)
additionally depends on the aggregate overhead 𝑆 as calculated in (6.9). This requires
𝑀C to be calculated iteratively by choosing a value for 𝑀C, then calculating 𝑆 , and
finally checking if this is below the maximum communication time. In our experiments,
with 𝑁 = 20,𝑊𝑃 = 4, and𝑀C = 2 we get 𝑆 = 5 additional bytes per packet. As a result,
slot_time increases from 380 µs to 400 µs and we get

76 000 µs ≥ (18 + 2) ∗ 9.5 ∗ 400 µs.

6.B. Usage of the Network Bandwidth for Control 151

Postscript

This chapter has presented a novel co-design of distributed control and wireless com-
munication that successfully handles overload situations, where more agents want to
transmit information than the communication system can support. Such situations are
inevitable as emerging CPS applications become increasingly sophisticated, featuring
more agents and higher traffic demands. Prior work using ETC or STC designs can
mitigate the overload problem by reducing the generated traffic on average. How-
ever, they cannot avoid overload situations as potentially all agents want to transmit
simultaneously, leading to unpredictable message losses. By contrast, our approach
efficiently distributes the agents’ communication needs withMixer (see Chapter 2)
to allocate the available bandwidth to agents with the highest need. Furthermore,
prioritizing traffic demands enables us to provide formal stability guarantees for the
entire CPS, including control and communication systems. Experiments on a CPS
testbed successfully demonstrate the synchronization of 20 cart-pole systems over a
multi-hop network with severely limited communication resources.

7
Conclusion and Outlook

CPS are considered a driving force behind the next industrial revolution [144, 184].
They integrate computing elements and communication into our environment to
monitor and control physical processes through sensors and actuators. As a result, CPS
will transform how humans andmachines interact with the world. In this context, many
envisioned CPS applications rely on the enormous potential of wireless communication,
which offers unmatched flexibility, substantial cost savings, and opens up completely
new possibilities.

However, many of these applications also have high dependability, efficiency, and
adaptivity requirements. Specifically, CPS should operate as expected even if individual
parts fail; they should adapt to continuously changing conditions caused by variations
within the system or the environment; and they should efficiently support dense and
large-scale deployments. These requirements are in stark contrast to the characteristics
of wireless communication. For instance, frequent and correlated message losses, as
well as long and varying delays significantly complicate the control design. In addition,
node mobility and other network dynamics lead to time-varying communication links
that create a large coordination overhead.

Existing works that have practically addressed the challenges of wireless CPS can only
satisfy a few of the many requirements mentioned above. For example, slow physical
systems with update intervals in the order of seconds have loose requirements and
thus massively relieve timing and reliability constraints. By contrast, the control of fast
physical systems is limited to small single-hop deployments. A major problem is the
properties of state-of-the-art wireless communication protocols. Their performance
largely depends on up-to-date information about the network state, which becomes an
unmanageable effort in dynamic networks, leading to an unreliable and unpredictable
message exchange and, thus, deteriorating the control performance.

154 Chapter 7. Conclusion and Outlook

7.1 Contributions

This thesis addresses the shortcomings of prior approaches and makes contributions in
two areas. In the first part, we developed the networking foundation to meet the com-
munication demands of emerging CPS. Then, based on the co-design of communication
and control, we built and evaluated practical wireless CPS with theoretical guarantees,
using classical time-triggered control as well as modern event-based approaches. The
achievements of this thesis are summarized below.

Efficient and scalable communication with Mixer. We presented the many-to-all
communication primitiveMixer, which suits the diverse needs of emerging wireless
CPS. Compared to prior approaches, which rely on routing or flooding mechanisms,
Mixer provides a novel combination of ST and RLNC to operate largely indepen-
dently from the network topology and to achieve order-optimal scaling behavior. This
combination makesMixer widely applicable, supporting dynamic networks and any
communication pattern, from one-to-one to all-to-all, an essential requirement in
distributed CPS.

Highly dependable wireless communication with Butler. With our work on
Butler, we addressed the weak point of Mixer and other ST-based protocols and
significantly improved their dependability. Without exception, all ST-based protocols
rely on tight time synchronization and use a dedicated node for this task. Unfortunately,
a failure of this node results in a complete communication outage. However, nodes
can fail for various reasons, such as depleted batteries, and failures will be common in
large-scale systems. Therefore, a dependable communication service should enable the
message exchange between functioning nodes, irrespective of individual failures. To
achieve this goal, we developed Butler, a lightweight and distributed synchronization
mechanism that can synchronize the network on demand, eliminating the need for
a dedicated node and, thus, the single point of failure. In addition, we have formally
proven Butler’s correctness and evaluated its behavior and performance in testbed
experiments.

Wireless feedback control with stability guarantees. We were the first to demon-
strate fast feedback control over low-power wireless multi-hop networks with update
intervals of 20–50 ms. Existing solutions are either limited to single-hop networks or
physical processes with slow dynamics and update intervals of several seconds, leaving
a large gap to the requirements of envisioned CPS. We proposed a novel co-design to
fill this gap, realizing a tight integration of communication and control. Our approach
tames wireless imperfections to the extent possible and addresses the resulting key
properties in the control design. The careful integration of communication and control
tasks on a wireless embedded platform provides real-time operation and enables a thor-
ough end-to-end analysis of the entire CPS. As a result, we could formally guarantee
closed-loop stability and also validate these guarantees through real-world experiments
on a CPS testbed featuring real physical systems and wireless networks. Thus, our
work is an important step toward realizing the CPS vision.

7.2. Future Directions 155

End-to-end energy savings via control-guided communication. We have demon-
strated for the first time distributed, STC over wireless multi-hop networks with energy
savings and reallocation of resources at fast update intervals of tens of milliseconds.
While prior works could achieve significant savings on the control side, they could not
transfer those savings over to the communication side in order to gain an end-to-end
benefit. Our control-guided communication approach targets this deficit with a new
co-design, where the control system predicts future resource demands and informs
the communication system ahead of time. The practical evaluation on a CPS testbed
validates that the communication system can use its resources most efficiently and
save energy whenever possible.

Scaling beyond bandwidth limitations. Finally, we presented a novel co-design
using distributed control and Mixer to cope with the ever-increasing bandwidth
requirements. Our design can successfully handle overload situations where the
available communication bandwidth is insufficient to meet the demand. Existing
works using ETC or STC can reduce the communication demand on average; however,
they cannot prevent overload situations that result in message loss and unpredictable
control performance. In contrast, we use state predictions to derive priorities and
efficiently distribute them among all agents using Mixer. Thus, we can prioritize
communication demands in a distributed way and serve the agents with the greatest
needs first while respecting the available bandwidth at each time step. Furthermore,
because of the prioritization, we can guarantee closed-loop stability for heterogeneous
physical systems. We demonstrated the improved control performance in experiments
with 20 cart-pole systems and heavily constrained bandwidth.

7.2 Future Directions

A comprehensive understanding of synchronous transmissions. ST provide
a radically different perspective on low-power wireless communication, away from
unflexible routing-based approaches, and are an essential concept in this thesis. How-
ever, ST still need to be wholly understood, although significant progress has been
made in recent years, such as in analyzing beating patterns [182]. Nevertheless, with
a thorough understanding, PHYs could be adapted using, for example, more suitable
modulation schemes and transceiver designs to make better use of the capture effect
and other PHY phenomena. In addition, the unused potential could be tapped by
developing specialized hardware, such as radios that can receive multiple packets
simultaneously [85].

Despite the significantly better performance of ST-based protocols compared to link-
based protocols in many scenarios, their behavior often relies on simple measures, such
as the number of discovered neighbors or randomness. Unfortunately, many of these
measures provide only a very rough estimate of the actual situation in the real world.
The overall packet reception rate and bandwidth utilization could be further improved
with better measures, which are often closely intertwined with how we characterize

156 Chapter 7. Conclusion and Outlook

networks. Typical properties such as diameter, node degree, and link quality are static
metrics that describe the network state at a specific time but ignore their change rate
caused by network dynamics. Measures that can accurately capture network dynamics
and that are specifically tailored to the characteristics of ST could improve on the state
of the art.

Event-triggered and learning-based wireless control. In general, communication
resources have to be allocated in advance to use the available communication band-
width efficiently. The allocation presupposes that the different communication needs
are known (see periodic control in Chapter 4) or predictable (see STC in Chapter 5, and
predictive triggering in Chapter 6). In contrast, truly ETC makes instantaneous com-
munication decisions, providing the highest flexibility and shortest reaction time [63].
However, combining instantaneous decisions with wireless communication, which
requires planning, remains an open challenge.

Based on recent advances in machine learning and data science, learning-based ap-
proaches can improve various components of CPS, such as communication and control.
Learning enables continuously adapting to changing conditions and dealing with, for
example, uncertainty or changes in the physical system or control task at run-time.
Moreover, communication protocols such as Mixer that rely on simple measures and
heuristics can benefit significantly from learning and understanding the characteristics
of the network and its environment. Learning the system’s behavior and key indicators
is also valuable for fault-tolerance mechanisms. The early detection of abnormal behav-
ior enables appropriate actions before failures may deteriorate the functionality and
performance of CPS. However, learning is a resource-intensive task, and appropriate
models that can run on low-power embedded devices and strike the balance between
computational complexity and accuracy are needed. Furthermore, the challenge of
obtaining enough and also useful training data is essential to learn correct behavior.

From research to industry. The potential of wireless communication in control
applications is well known, and the industry is willing to exploit it. Nevertheless,
the current situation is far from the envisioned CPS scenarios, and wireless solutions
are neither found in time- nor safety-critical systems [17]. Sporadically, there are
wireless approaches, such as demonstrated in a paper mill [2], but this remains rare.
Mainly dependability concerns slow down the adoption in the rather conservative
industrial sector [184]. A necessary step toward a broader acceptance is the evaluation
of realistic CPS, an important contribution in this thesis; however, setting up such
testbeds is a time- and cost-intensive endeavor. Therefore, public CPS testbeds that
enable comparing different approaches in a reproducible environment would greatly
benefit the research community, accompanied by advances in wireless technology,
such as faster and more robust PHYs. In addition to experimental demonstrations,
accurate formal models of wireless CPS are needed to bridge theory and practice. In
that context, this thesis is a first step toward emerging wireless CPS, showing the
feasibility and focussing on fundamental requirements and properties.

Bibliography

[1] Jannik Abbenseth, Felipe Garcia Lopez, Christian Henkel, and Stefan Dörr.
Cloud-Based Cooperative Navigation for Mobile Service Robots in Dynamic
Industrial Environments. In Symposium on Applied Computing (SAC), pages
283–288, Marrakech, Morocco, 2017. doi:10.1145/3019612.3019710.

[2] Anders Ahlén, Johan Åkerberg, Markus Eriksson, Alf J. Isaksson, Takuya
Iwaki, Karl Henrik Johansson, Steffi Knorn, Thomas Lindh, and Henrik Sand-
berg. Toward Wireless Control in Industrial Process Automation: A Case
Study at a Paper Mill. IEEE Control Systems Magazine, 39(5):36–57, 2019.
doi:10.1109/MCS.2019.2925226.

[3] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Raymond W. Yeung. Net-
work Information Flow. IEEE Transactions on Information Theory, 46(4):1204–
1216, 2000. doi:10.1109/18.850663.

[4] Johan Åkerberg, Mikael Gidlund, and Mats Björkman. Future Research Chal-
lenges in Wireless Sensor and Actuator Networks Targeting Industrial Automa-
tion. In IEEE International Conference on Industrial Informatics (INDIN), pages
410–415, Lisbon, Portugal, 2011. doi:10.1109/INDIN.2011.6034912.

[5] Beshr Al Nahas, Simon Duquennoy, and Olaf Landsiedel. Network-Wide Con-
sensus Utilizing the Capture Effect in Low-Power Wireless Networks. In ACM
Conference on Embedded Networked Sensor Systems (SenSys), pages 1:1–1:14,
Delft, Netherlands, 2017. doi:10.1145/3131672.3131685.

[6] Rajeev Alur, Alessandro D’Innocenzo, Karl Henrik Johansson, George J. Pappas,
and Gera Weiss. Compositional Modeling and Analysis of Multi-Hop Control
Networks. IEEE Transactions on Automatic Control, 56(10):2345–2357, 2011.
doi:10.1109/TAC.2011.2163873.

[7] Brian D. O. Anderson and John B.Moore. Optimal Control: Linear Quadratic Meth-
ods. Dover Books on Engineering. Dover Publications, 2007. ISBN 9780486457666.
URL https://books.google.de/books?id=PZToAAAACAAJ.

[8] Brian D. O. Anderson and John B. Moore. Optimal Filtering. Dover Books on
Electrical Engineering. Dover Publications, 2012. ISBN 9780486136899. URL
https://books.google.de/books?id=iYMqLQp49UMC.

https://doi.org/10.1145/3019612.3019710
https://doi.org/10.1109/MCS.2019.2925226
https://doi.org/10.1109/18.850663
https://doi.org/10.1109/INDIN.2011.6034912
https://doi.org/10.1145/3131672.3131685
https://doi.org/10.1109/TAC.2011.2163873
https://books.google.de/books?id=PZToAAAACAAJ
https://books.google.de/books?id=iYMqLQp49UMC

158 BIBLIOGRAPHY

[9] José Araújo, Adolfo Anta, Manuel Mazo Jr., João Faria, Aitor Hernandez, Paulo
Tabuada, and Karl Henrik Johansson. Self-Triggered Control over Wireless
Sensor and Actuator Networks. In International Conference on Distributed Com-
puting in Sensor Systems and Workshops (DCOSS), pages 1–9, Barcelona, Spain,
2011. doi:10.1109/DCOSS.2011.5982135.

[10] José Araújo, Manuel Mazo Jr., Adolfo Anta, Paulo Tabuada, and Karl Henrik
Johansson. System Architectures, Protocols and Algorithms for Aperiodic Wire-
less Control Systems. IEEE Transactions on Industrial Informatics, 10(1):175–184,
2014. doi:10.1109/TII.2013.2262281.

[11] Karl Johan Åström and Richard M. Murray. Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, 2008. ISBN 9780691135762.
URL https://books.google.de/books?id=G8UGmQEACAAJ.

[12] Karl Johan Åström and Björn Wittenmark. Computer-Controlled Systems: Theory
and Design. Prentice-Hall Information and System Sciences Series. Prentice
Hall, 3rd edition, 1997. ISBN 9780133148992. URL https://books.google.de/

books?id=5Z0QAQAAMAAJ.

[13] M. Hadi Balaghi I, Duarte J. Antunes, Mohammad Hossein Mamduhi, and
Sandra Hirche. A Decentralized Consistent Policy for Event-triggered Con-
trol over a Shared Contention-based Network. In IEEE Conference on
Decision and Control (CDC), pages 1719–1724, Miami, Florida, USA, 2018.
doi:10.1109/CDC.2018.8619584.

[14] Nicolas W. Bauer, S.J.L.M. Bas van Loon, Nathan van de Wouw, and
W.P.M.H. Maurice Heemels. Exploring the Boundaries of Robust Stabil-
ity Under Uncertain Communication: An NCS Toolbox Applied to a Wire-
less Control Setup. IEEE Control Systems Magazine, 34(4):65–86, 2014.
doi:10.1109/MCS.2014.2320394.

[15] Dominik Baumann, Fabian Mager, Harsoveet Singh, Marco Zimmerling, and
Sebastian Trimpe. Evaluating Low-Power Wireless Cyber-Physical Systems. In
IEEE Workshop on Benchmarking Cyber-Physical Networks and Systems (CPS-
Bench), pages 13–18, Porto, Portugal, 2018. doi:10.1109/CPSBench.2018.00009.

[16] Dominik Baumann, Fabian Mager, Romain Jacob, Lothar Thiele, Marco Zimmer-
ling, and Sebastian Trimpe. Fast Feedback Control over Multi-Hop Wireless
Networks with Mode Changes and Stability Guarantees. ACM Transactions on
Cyber-Physical Systems, 4(2):18:1–18:32, 2019. doi:10.1145/3361846.

[17] Dominik Baumann, Fabian Mager, Ulf Wetzker, Lothar Thiele, Marco Zimmer-
ling, and Sebastian Trimpe. Wireless Control for Smart Manufacturing: Recent
Approaches and Open Challenges. Proceedings of the IEEE, 109(4):441–467, 2021.
doi:10.1109/JPROC.2020.3032633.

https://doi.org/10.1109/DCOSS.2011.5982135
https://doi.org/10.1109/TII.2013.2262281
https://books.google.de/books?id=G8UGmQEACAAJ
https://books.google.de/books?id=5Z0QAQAAMAAJ
https://books.google.de/books?id=5Z0QAQAAMAAJ
https://doi.org/10.1109/CDC.2018.8619584
https://doi.org/10.1109/MCS.2014.2320394
https://doi.org/10.1109/CPSBench.2018.00009
https://doi.org/10.1145/3361846
https://doi.org/10.1109/JPROC.2020.3032633

BIBLIOGRAPHY 159

[18] İlker Bekmezci, Ozgur Koray Sahingoz, and Şamil Temel. Flying Ad-Hoc
Networks (FANETs): A survey. Ad Hoc Networks, 11(3):1254–1270, 2013.
doi:10.1016/j.adhoc.2012.12.004.

[19] Bart Besselink, Valerio Turri, Sebastian H. van de Hoef, Kuo-Yun Liang, Assad
Alam, Jonas Mårtensson, and Karl Henrik Johansson. Cyber-Physical Control
of Road Freight Transport. Proceedings of the IEEE, 104(5):1128–1141, 2016.
doi:10.1109/JPROC.2015.2511446.

[20] Laksh Bhatia, Ivana Tomić, Anqi Fu, Michael Breza, and Julie A. Mccann. Control
Communication Co-Design for Wide Area Cyber-Physical Systems. ACM Trans-
actions on Cyber-Physical Systems, 5(2):18:1–18:27, 2021. doi:10.1145/3418528.

[21] Naveed Anwar Bhatti, Muhammad Hamad Alizai, Affan A. Syed, and Luca
Mottola. Energy Harvesting and Wireless Transfer in Sensor Network Applica-
tions: Concepts and Experiences. ACM Transactions on Sensor Networks, 12(3):
24:1–24:40, 2016. doi:10.1145/2915918.

[22] Vincent D. Blondel and John N. Tsitsiklis. A survey of computational com-
plexity results in systems and control. Automatica, 36(9):1249–1274, 2000.
doi:10.1016/S0005-1098(00)00050-9.

[23] Olfa Boubaker. The inverted Pendulum: A fundamental Benchmark in Control
Theory and Robotics. In International Conference on Education and e-Learning
Innovations (ICEELI), Sousse, Tunisia, 2012. doi:10.1109/ICEELI.2012.6360606.

[24] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan.
Linear Matrix Inequalities in System and Control Theory. Society for Industrial and
Applied Mathematics, 1994. ISBN 9780898714852. doi:10.1137/1.9781611970777.

[25] Frank M. Callier and Charles A. Desoer. Linear System Theory. Springer Science
& Business Media, 2012. ISBN 9781461209577. URL https://books.google.

de/books?id=9xTSBwAAQBAJ.

[26] Berta Carballido Villaverde, Susan Rea, and Dirk Pesch. InRout – A QoS aware
route selection algorithm for industrial wireless sensor networks. Ad Hoc Net-
works, 10(3):458–478, 2012. doi:10.1016/j.adhoc.2011.07.015.

[27] Matteo Ceriotti, Michele Corrà, Leandro D’Orazio, Roberto Doriguzzi, Daniele
Facchin, Stefan Guna, Gian Paolo Jesi, Renato Lo Cigno, Luca Mottola, Amy L.
Murphy, Massimo Pescalli, Gian Pietro Picco, Denis Pregnolato, and Carloal-
berto Torghele. Is There Light at the Ends of the Tunnel? Wireless Sensor
Networks for Adaptive Lighting in Road Tunnels. In ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN), pages 187–198,
Chicago, Illinois, USA, 2011. URL https://ieeexplore.ieee.org/abstract/

document/5779037.

https://doi.org/10.1016/j.adhoc.2012.12.004
https://doi.org/10.1109/JPROC.2015.2511446
https://doi.org/10.1145/3418528
https://doi.org/10.1145/2915918
https://doi.org/10.1016/S0005-1098(00)00050-9
https://doi.org/10.1109/ICEELI.2012.6360606
https://doi.org/10.1137/1.9781611970777
https://books.google.de/books?id=9xTSBwAAQBAJ
https://books.google.de/books?id=9xTSBwAAQBAJ
https://doi.org/10.1016/j.adhoc.2011.07.015
https://ieeexplore.ieee.org/abstract/document/5779037
https://ieeexplore.ieee.org/abstract/document/5779037

160 BIBLIOGRAPHY

[28] Anton Cervin. Integrated Control and Real-Time Scheduling. PhD
thesis, Department of Automatic Control, Lund Institute of Technology
(LTH), 2003. URL https://portal.research.lu.se/en/publications/

integrated-control-and-real-time-scheduling.

[29] Szymon Chachulski, Michael Jennings, Sachin Katti, and Dina Katabi. Trad-
ing Structure for Randomness in Wireless Opportunistic Routing. In Con-
ference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications (SIGCOMM), pages 169–180, Kyoto, Japan, 2007.
doi:10.1145/1282380.1282400.

[30] Timothy H. Chung, Michael R. Clement, Michael A. Day, Kevin D. Jones, Du-
ane Davis, and Marianna Jones. Live-Fly, Large-Scale Field Experimentation
for Large Numbers of Fixed-Wing UAVs. In IEEE International Conference on
Robotics and Automation (ICRA), pages 1255–1262, Stockholm, Sweden, 2016.
doi:10.1109/ICRA.2016.7487257.

[31] James R. Clapper, John J. Young, James E. Cartwright, and John G. Grimes.
Unmanned Systems Roadmap 2007-2032. Technical report, US Department
of Defense, 2007. URL https://www.globalsecurity.org/intell/library/

reports/2007/dod-unmanned-systems-roadmap_2007-2032.pdf.

[32] Peter Corke, Tim Wark, Raja Jurdak, Wen Hu, Philip Valencia, and Darren
Moore. Environmental Wireless Sensor Networks. Proceedings of the IEEE, 98
(11):1903–1917, 2010. doi:10.1109/JPROC.2010.2068530.

[33] Nikolaus Correll, Prabal Dutta, Richard Han, and Kristofer Pister. Wireless
Robotic Materials. In ACM Conference on Embedded Networked Sensor Systems
(SenSys), pages 24:1–24:6, Delft, Netherlands, 2017. doi:10.1145/3131672.3131702.

[34] Sanjoy Dasgupta and Anupam Gupta. An Elementary Proof of a Theorem of
Johnson and Lindenstrauss. Random Structures & Algorithms, 22(1):60–65, 2003.
doi:10.1002/rsa.10073.

[35] Brian Dawkins. Siobhan’s Problem: The Coupon Collector Revisited. The
American Statistician, 45(1):76–82, 1991. doi:10.1080/00031305.1991.10475772.

[36] SupratimDeb, Muriel Médard, and Clifford Choute. Algebraic Gossip: ANetwork
Coding Approach to Optimal Multiple Rumor Mongering. IEEE Transactions on
Information Theory, 52(6):2486–2507, 2006. doi:10.1109/TIT.2006.874532.

[37] Burak Demirel, Arunselvan Ramaswamy, Daniel E. Quevedo, and Hol-
ger Karl. DeepCAS: A Deep Reinforcement Learning Algorithm for
Control-Aware Scheduling. IEEE Control Systems Letters, 2(4):737–742, 2018.
doi:10.1109/LCSYS.2018.2847721.

[38] Statista Research Department. M2M (machine-to-machine) – Statis-
tics & Facts, 2021. URL https://www.statista.com/topics/1843/

m2m-machine-to-machine/. Accessed: 2022-12-13.

https://portal.research.lu.se/en/publications/integrated-control-and-real-time-scheduling
https://portal.research.lu.se/en/publications/integrated-control-and-real-time-scheduling
https://doi.org/10.1145/1282380.1282400
https://doi.org/10.1109/ICRA.2016.7487257
https://www.globalsecurity.org/intell/library/reports/2007/dod-unmanned-systems-roadmap_2007-2032.pdf
https://www.globalsecurity.org/intell/library/reports/2007/dod-unmanned-systems-roadmap_2007-2032.pdf
https://doi.org/10.1109/JPROC.2010.2068530
https://doi.org/10.1145/3131672.3131702
https://doi.org/10.1002/rsa.10073
https://doi.org/10.1080/00031305.1991.10475772
https://doi.org/10.1109/TIT.2006.874532
https://doi.org/10.1109/LCSYS.2018.2847721
https://www.statista.com/topics/1843/m2m-machine-to-machine/
https://www.statista.com/topics/1843/m2m-machine-to-machine/

BIBLIOGRAPHY 161

[39] Patricia Derler, Edward A. Lee, and Alberto Sangiovanni Vincentelli. Mod-
eling Cyber-Physical Systems. Proceedings of the IEEE, 100(1):13–28, 2012.
doi:10.1109/JPROC.2011.2160929.

[40] Manjunath Doddavenkatappa, Mun Choon Chan, and A. L. Ananda. Indriya:
A Low-Cost, 3D Wireless Sensor Network Testbed. In Testbeds and Research
Infrastructure. Development of Networks and Communities (TridentCom), pages
302–316, Shanghai, China, 2012. doi:10.1007/978-3-642-29273-6_23.

[41] Manjunath Doddavenkatappa, Mun Choon Chan, and Ben Leong. Splash:
Fast Data Dissemination with Constructive Interference in Wireless Sen-
sor Networks. In USENIX Symposium on Networked Systems Design
and Implementation (NSDI), pages 269–282, Lombard, Illinois, USA, 2013.
URL https://www.usenix.org/conference/nsdi13/technical-sessions/

presentation/doddavenkatappa.

[42] Wan Du, Jansen Christian Liando, Huanle Zhang, and Mo Li. When Pipelines
Meet Fountain: Fast Data Dissemination in Wireless Sensor Networks. In ACM
Conference on Embedded Networked Sensor Systems (SenSys), pages 365–378,
Seoul, South Korea, 2015. doi:10.1145/2809695.2809721.

[43] Simon Duquennoy, Beshr Al Nahas, Olaf Landsiedel, and Thomas Watteyne.
Orchestra: Robust Mesh Networks Through Autonomously Scheduled TSCH. In
ACM Conference on Embedded Networked Sensor Systems (SenSys), pages 337–350,
Seoul, South Korea, 2015. doi:10.1145/2809695.2809714.

[44] Johan Eker, Anton Cervin, and Andreas Hörjel. Distributed Wireless
Control Using Bluetooth. IFAC Proceedings Volumes, 34(22):360–365, 2001.
doi:10.1016/S1474-6670(17)32965-8.

[45] Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Kumar. Next
Century Challenges: Scalable Coordination in Sensor Networks. In ACM/IEEE
International Conference on Mobile Computing and Networking (MobiCom), pages
263–270, Seattle, Washington, USA, 1999. doi:10.1145/313451.313556.

[46] Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang. Smart Grid – The
New and Improved Power Grid: A Survey. IEEE Communications Surveys &
Tutorials, 14(4):944–980, 2012. doi:10.1109/SURV.2011.101911.00087.

[47] William Feller. An Introduction to Probability Theory and Its Applications. Wiley,
3rd edition, 1968. ISBN 9780471257080. URL https://books.google.de/

books?id=wYkQAQAAIAAJ.

[48] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh. Efficient
Network Flooding and Time Synchronization with Glossy. In ACM/IEEE Inter-
national Conference on Information Processing in Sensor Networks (IPSN), pages
73–84, Chicago, Illinois, USA, 2011. URL https://ieeexplore.ieee.org/

abstract/document/5779066.

https://doi.org/10.1109/JPROC.2011.2160929
https://doi.org/10.1007/978-3-642-29273-6_23
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/doddavenkatappa
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/doddavenkatappa
https://doi.org/10.1145/2809695.2809721
https://doi.org/10.1145/2809695.2809714
https://doi.org/10.1016/S1474-6670(17)32965-8
https://doi.org/10.1145/313451.313556
https://doi.org/10.1109/SURV.2011.101911.00087
https://books.google.de/books?id=wYkQAQAAIAAJ
https://books.google.de/books?id=wYkQAQAAIAAJ
https://ieeexplore.ieee.org/abstract/document/5779066
https://ieeexplore.ieee.org/abstract/document/5779066

162 BIBLIOGRAPHY

[49] Federico Ferrari, Marco Zimmerling, Luca Mottola, and Lothar Thiele.
Low-Power Wireless Bus. In ACM Conference on Embedded Networked
Sensor Systems (SenSys), pages 1–14, Toronto, Ontario, Canada, 2012.
doi:10.1145/2426656.2426658.

[50] Federico Ferrari, Marco Zimmerling, Luca Mottola, and Lothar Thiele. Virtual
Synchrony Guarantees for Cyber-physical Systems. In IEEE International Sym-
posium on Reliable Distributed Systems (SRDS), pages 20–30, Braga, Portugal,
2013. doi:10.1109/SRDS.2013.11.

[51] Christina Fragouli, JörgWidmer, and Jean-Yves Le Boudec. Efficient Broadcasting
Using Network Coding. IEEE/ACM Transactions on Networking, 16(2):450–463,
2008. doi:10.1109/TNET.2007.901080.

[52] Bob Frankston. Consumer Technology Versus 5G. IEEE Consumer Electronics
Magazine, 10(2):43–50, 2021. doi:10.1109/MCE.2020.3037418.

[53] Guillermo Gallego, Carlos Cuevas, Raúl Mohedano, and Narciso García. On
the Mahalanobis Distance Classification Criterion for Multidimensional Normal
Distributions. IEEE Transactions on Signal Processing, 61(17):4387–4396, 2013.
doi:10.1109/TSP.2013.2269047.

[54] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-sync Proto-
col for Sensor Networks. In International Conference on Embedded Networked
Sensor Systems (SenSys), pages 138–149, Los Angeles, California, USA, 2003.
doi:10.1145/958491.958508.

[55] Konstantinos Gatsis, Alejandro Ribeiro, and George J. Pappas. Optimal Power
Management in Wireless Control Systems. IEEE Transactions on Automatic
Control, 59(6):1495–1510, 2014. doi:10.1109/TAC.2014.2305951.

[56] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip
Levis. Collection Tree Protocol. In ACM Conference on Embedded Net-
worked Sensor Systems (SenSys), pages 1–14, Berkeley, California, USA, 2009.
doi:10.1145/1644038.1644040.

[57] Denis S. Grebenkov. First exit times of harmonically trapped particles: a di-
dactic review. Journal of Physics A: Mathematical and Theoretical, 48(1), 2014.
doi:10.1088/1751-8113/48/1/013001.

[58] Pulkit Grover. Information Structures, the Witsenhausen Counterexample, and
Communicating Using Actions. Encyclopedia of Systems and Control, pages
567–571, 2015. doi:10.1007/978-1-4471-5058-9_148.

[59] Bernhard Haeupler. Analyzing Network Coding Gossip Made Easy. In ACM
Symposium on Theory of Computing (STOC), pages 293–302, San Jose, California,
USA, 2011. doi:10.1145/1993636.1993676.

https://doi.org/10.1145/2426656.2426658
https://doi.org/10.1109/SRDS.2013.11
https://doi.org/10.1109/TNET.2007.901080
https://doi.org/10.1109/MCE.2020.3037418
https://doi.org/10.1109/TSP.2013.2269047
https://doi.org/10.1145/958491.958508
https://doi.org/10.1109/TAC.2014.2305951
https://doi.org/10.1145/1644038.1644040
https://doi.org/10.1088/1751-8113/48/1/013001
https://doi.org/10.1007/978-1-4471-5058-9_148
https://doi.org/10.1145/1993636.1993676

BIBLIOGRAPHY 163

[60] Bernhard Haeupler. Analyzing Network Coding (Gossip) Made Easy. Journal of
the ACM, 63(3):26:1–26:22, 2016. doi:10.1145/2629696.

[61] Samira Hayat, Evşen Yanmaz, and Raheeb Muzaffar. Survey on Unmanned
Aerial Vehicle Networks for Civil Applications: A Communications View-
point. IEEE Communications Surveys and Tutorials, 18(4):2624–2661, 2016.
doi:10.1109/COMST.2016.2560343.

[62] JianpingHe, Peng Cheng, Ling Shi, Jiming Chen, and Youxian Sun. Time Synchro-
nization inWSNs: AMaximum-Value-Based Consensus Approach. IEEE Transac-
tions on Automatic Control, 59(3):660–675, 2014. doi:10.1109/TAC.2013.2286893.

[63] W.P.M.H. Heemels, Karl Henrik Johansson, and Paulo Tabuada. An Intro-
duction to Event-triggered and Self-triggered Control. In IEEE Conference
on Decision and Control (CDC), pages 3270–3285, Maui, Hawaii, USA, 2012.
doi:10.1109/CDC.2012.6425820.

[64] Janus Heide, Morten V. Pedersen, Frank H. P. Fitzek, and Muriel Médard. On
Code Parameters and Coding Vector Representation for Practical RLNC. In IEEE
International Conference on Communications (ICC), pages 1–5, Kyoto, Japan, 2011.
doi:10.1109/icc.2011.5963013.

[65] Hermann Hellwagner and Christian Bettstetter. Networking research chal-
lenges in multi-UAV systems, 2016. URL https://bettstetter.com/

uav-networking-challenges/. Accessed: 2022-12-13.

[66] Mario Hermann, Tobias Pentek, and Boris Otto. Design Principles for Industrie
4.0 Scenarios. In Hawaii International Conference on System Sciences (HICSS),
pages 3928–3937, Koloa, Hawaii, USA, 2016. doi:10.1109/HICSS.2016.488.

[67] Aitor Hernandez, João Faria, José Araújo, Pangun Park, Henrik Sandberg, and
Karl Henrik Johansson. Inverted Pendulum Control over an IEEE 802.15.4
Wireless Sensor and Actuator Network. In European Conference on Wireless
Sensor Networks (EWSN), Bonn, Germany, 2011. URL http://kth.diva-portal.
org/smash/record.jsf?pid=diva2%3A504854.

[68] Shahab Heshmati-Alamdari, Alina Eqtami, George C. Karras, Dimos V. Dimarog-
onas, and Kostas J. Kyriakopoulos. A Self-triggered Visual Servoing Model
Predictive Control Scheme for Under-actuated Underwater Robotic Vehicles. In
IEEE International Conference on Robotics and Automation (ICRA), pages 3826–
3831, Hong Kong, China, 2014. doi:10.1109/ICRA.2014.6907414.

[69] João P. Hespanha, Payam Naghshtabrizi, and Yonggang Xu. A Survey of Recent
Results in Networked Control Systems. Proceedings of the IEEE, 95(1):138–162,
2007. doi:10.1109/JPROC.2006.887288.

https://doi.org/10.1145/2629696
https://doi.org/10.1109/COMST.2016.2560343
https://doi.org/10.1109/TAC.2013.2286893
https://doi.org/10.1109/CDC.2012.6425820
https://doi.org/10.1109/icc.2011.5963013
https://bettstetter.com/uav-networking-challenges/
https://bettstetter.com/uav-networking-challenges/
https://doi.org/10.1109/HICSS.2016.488
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A504854
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A504854
https://doi.org/10.1109/ICRA.2014.6907414
https://doi.org/10.1109/JPROC.2006.887288

164 BIBLIOGRAPHY

[70] Tracey Ho, Muriel Médard, Ralf Koetter, David R. Karger, Michelle Effros,
Jun Shi, and Ben Leong. A Random Linear Network Coding Approach to
Multicast. IEEE Transactions on Information Theory, 52(10):4413–4430, 2006.
doi:10.1109/TIT.2006.881746.

[71] IEEE Standard for Low-RateWireless Networks. IEEE Std 802.15.4-2020 (Revision
of IEEE Std 802.15.4-2015), 2020. doi:10.1109/IEEESTD.2020.9144691.

[72] Timofei Istomin, Csaba Kiraly, and Gian Pietro Picco. Is RPL Ready for Ac-
tuation? A Comparative Evaluation in a Smart City Scenario. In European
Conference on Wireless Sensor Networks (EWSN), pages 291–299, Porto, Portugal,
2015. doi:10.1007/978-3-319-15582-1_22.

[73] Timofei Istomin, Amy L. Murphy, Gian Pietro Picco, and Usman Raza. Data
Prediction + Synchronous Transmissions = Ultra-Low Power Wireless Sensor
Networks. In ACM Conference on Embedded Networked Sensor Systems (SenSys),
pages 83–95, Stanford, California, USA, 2016. doi:10.1145/2994551.2994558.

[74] Romain Jacob, Marco Zimmerling, Pengcheng Huang, Jan Beutel, and Lothar
Thiele. End-to-End Real-Time Guarantees in Wireless Cyber-Physical Systems.
In IEEE Real-Time Systems Symposium (RTSS), pages 167–178, Porto, Portugal,
2016. doi:10.1109/RTSS.2016.025.

[75] Romain Jacob, Licong Zhang, Marco Zimmerling, Jan Beutel, Samarjit
Chakraborty, and Lothar Thiele. TTW: A Time-Triggered-Wireless Design
for CPS. In Design, Automation & Test in Europe Conference & Exhibition (DATE),
pages 865–868, Dresden, Germany, 2018. doi:10.23919/DATE.2018.8342127.

[76] Romain Jacob, Licong Zhang, Marco Zimmerling, Jan Beutel, Samarjit
Chakraborty, and Lothar Thiele. The Time-Triggered Wireless Architecture. In
Euromicro Conference on Real-Time Systems (ECRTS), volume 165, pages 19:1–
19:25, Dagstuhl, Germany, 2020. doi:10.4230/LIPIcs.ECRTS.2020.19.

[77] Peng Jiang. A New Method for Node Fault Detection in Wireless Sensor Net-
works. Sensors, 9(2):1282–1294, 2009. doi:10.3390/s90201282.

[78] Richard M. Karp, Christian Schindelhauer, Scott Shenker, and Berthold Vöck-
ing. Randomized Rumor Spreading. In Symposium on Foundations of Com-
puter Science (FOCS), pages 565–574, Redondo Beach, California, USA, 2000.
doi:10.1109/SFCS.2000.892324.

[79] Jens Karschau, Marco Zimmerling, and Benjamin M. Friedrich. Renormalization
group theory for percolation in time-varying networks. Scientific Reports, 8
(8011):1–8, 2018. doi:10.1038/s41598-018-25363-2.

[80] Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina Katabi, Muriel Médard, and Jon
Crowcroft. XORs in the Air: PracticalWireless Network Coding. InConference on
Applications, Technologies, Architectures, and Protocols for Computer Communica-
tions (SIGCOMM), pages 243–254, Pisa, Italy, 2006. doi:10.1145/1159913.1159942.

https://doi.org/10.1109/TIT.2006.881746
https://doi.org/10.1109/IEEESTD.2020.9144691
https://doi.org/10.1007/978-3-319-15582-1_22
https://doi.org/10.1145/2994551.2994558
https://doi.org/10.1109/RTSS.2016.025
https://doi.org/10.23919/DATE.2018.8342127
https://doi.org/10.4230/LIPIcs.ECRTS.2020.19
https://doi.org/10.3390/s90201282
https://doi.org/10.1109/SFCS.2000.892324
https://doi.org/10.1038/s41598-018-25363-2
https://doi.org/10.1145/1159913.1159942

BIBLIOGRAPHY 165

[81] Sachin Katti, Shyamnath Gollakota, and Dina Katabi. Embracing Wireless Inter-
ference: Analog Network Coding. In Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (SIGCOMM), pages
397–408, Kyoto, Japan, 2007. doi:10.1145/1282380.1282425.

[82] Tai-hoon Kim, Carlos Ramos, and Sabah Mohammed. Smart City and IoT. Future
Generation Computer Systems, 76:159–162, 2017. doi:10.1016/j.future.2017.03.034.

[83] Andrzej Kochut, Arunchandar Vasan, A. Udaya Shankar, and Ashok Agrawala.
Sniffing out the correct Physical Layer Capture model in 802.11b. In IEEE
International Conference on Network Protocols (ICNP), pages 252–261, Berlin,
Germany, 2004. doi:10.1109/ICNP.2004.1348115.

[84] Ralf Koetter and Muriel Médard. An Algebraic Approach to Network
Coding. IEEE/ACM Transactions on Networking, 11(5):782–795, 2003.
doi:10.1109/TNET.2003.818197.

[85] Linghe Kong and Xue Liu. mZig: Enabling Multi-Packet Reception in ZigBee.
In International Conference on Mobile Computing and Networking (MobiCom),
pages 552–565, Paris, France, 2015. doi:10.1145/2789168.2790104.

[86] Linghe Kong, Xi Chen, Xue Liu, Qiao Xiang, Yi Gao, Noam Ben Baruch,
and Guihai Chen. AdaSharing: Adaptive Data Sharing in Collaborative
Robots. IEEE Transactions on Industrial Electronics, 64(12):9569–9579, 2017.
doi:10.1109/TIE.2017.2708000.

[87] Dimitrios Koutsonikolas, Y. Charlie Hu, and Chih-Chun Wang. Pacifier:
High-Throughput, Reliable Multicast Without “Crying Babies” in Wireless
Mesh Networks. IEEE/ACM Transactions on Networking, 20(5):1375–1388, 2012.
doi:10.1109/TNET.2011.2177274.

[88] A. Ajith Kumar S., Knut Øvsthus, and Lars Michael Kristensen. An Industrial
Perspective onWireless Sensor Networks – A Survey of Requirements, Protocols,
and Challenges. IEEE Communications Surveys & Tutorials, 16(3):1391–1412,
2014. doi:10.1109/SURV.2014.012114.00058.

[89] Branislav Kusy, Prabal Dutta, Philip Levis, Miklós Maróti, Ákos Lédeczi, and
David Culler. Elapsed time on arrival: a simple and versatile primitive for
canonical time synchronisation services. International Journal of Ad Hoc and
Ubiquitous Computing, 1(4):239–251, 2006. doi:10.1504/IJAHUC.2006.010505.

[90] Yann Labit, Dimitri Peaucelle, and Didier Henrion. SEDUMI INTERFACE 1.02:
A tool for solving LMI problems with SEDUMI. In IEEE International Symposium
on Computer Aided Control System Design (CACSD), pages 272–277, Glasgow,
UK, 2002. doi:10.1109/CACSD.2002.1036966.

https://doi.org/10.1145/1282380.1282425
https://doi.org/10.1016/j.future.2017.03.034
https://doi.org/10.1109/ICNP.2004.1348115
https://doi.org/10.1109/TNET.2003.818197
https://doi.org/10.1145/2789168.2790104
https://doi.org/10.1109/TIE.2017.2708000
https://doi.org/10.1109/TNET.2011.2177274
https://doi.org/10.1109/SURV.2014.012114.00058
https://doi.org/10.1504/IJAHUC.2006.010505
https://doi.org/10.1109/CACSD.2002.1036966

166 BIBLIOGRAPHY

[91] Olaf Landsiedel, Federico Ferrari, and Marco Zimmerling. Chaos: Versatile
and Efficient All-to-All Data Sharing and in-Network Processing at Scale. In
ACM Conference on Embedded Networked Sensor Systems (SenSys), pages 1:1–1:14,
Roma, Italy, 2013. doi:10.1145/2517351.2517358.

[92] J. Nicholas Laneman, David N. C. Tse, and Gregory W. Wornell. Cooper-
ative Diversity in Wireless Networks: Efficient Protocols and Outage Be-
havior. IEEE Transactions on Information Theory, 50(12):3062–3080, 2004.
doi:10.1109/TIT.2004.838089.

[93] Jeongkeun Lee, Wonho Kim, Sung-Ju Lee, Daehyung Jo, Jiho Ryu, Taekyoung
Kwon, and Yanghee Choi. An Experimental Study on the Capture Effect in
802.11a Networks. In ACM International Workshop on Wireless Network Testbeds,
Experimental Evaluation and Characterization (WinTECH), pages 19–26, Mon-
treal, Quebec, Canada, 2007. doi:10.1145/1287767.1287772.

[94] Krijn Leentvaar and Jan H. Flint. The Capture Effect in FM Re-
ceivers. IEEE Transactions on Communications, 24(5):531–539, 1976.
doi:10.1109/TCOM.1976.1093327.

[95] Christoph Lenzen, Philipp Sommer, and Roger Wattenhofer. PulseSync: An
Efficient and Scalable Clock Synchronization Protocol. IEEE/ACM Transactions
on Networking, 23(3):717–727, 2015. doi:10.1109/TNET.2014.2309805.

[96] Bo Li, Yehan Ma, Tyler Westenbroek, Chengjie Wu, Humberto Gonzalez, and
Chenyang Lu. Wireless Routing and Control: a Cyber-Physical Case Study. In
ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), Vienna,
Austria, 2016. doi:10.1109/ICCPS.2016.7479131.

[97] Shuo-Yen Robert Li, Raymond W. Yeung, and Ning Cai. Linear Network
Coding. IEEE Transactions on Information Theory, 49(2):371–381, 2003.
doi:10.1109/TIT.2002.807285.

[98] Yao Li, Emina Soljanin, and Predrag Spasojevic. Effects of the Generation
Size and Overlap on Throughput and Complexity in Randomized Linear Net-
work Coding. IEEE Transactions on Information Theory, 57(2):1111–1123, 2011.
doi:10.1109/TIT.2010.2095111.

[99] Roman Lim, Federico Ferrari, Marco Zimmerling, Christoph Walser, Philipp
Sommer, and Jan Beutel. FlockLab: A Testbed for Distributed, Synchronized
Tracing and Profiling of Wireless Embedded Systems. In International Conference
on Information Processing in Sensor Networks (IPSN), pages 153–166, Philadelphia,
Pennsylvania, USA, 2013. doi:10.1145/2461381.2461402.

[100] Roman Lim, Balz Maag, and Lothar Thiele. Time-of-Flight Aware Time Syn-
chronization for Wireless Embedded Systems. In International Conference on
Embedded Wireless Systems and Networks (EWSN), pages 149–158, Graz, Austria,
2016. URL https://dl.acm.org/doi/10.5555/2893711.2893732.

https://doi.org/10.1145/2517351.2517358
https://doi.org/10.1109/TIT.2004.838089
https://doi.org/10.1145/1287767.1287772
https://doi.org/10.1109/TCOM.1976.1093327
https://doi.org/10.1109/TNET.2014.2309805
https://doi.org/10.1109/ICCPS.2016.7479131
https://doi.org/10.1109/TIT.2002.807285
https://doi.org/10.1109/TIT.2010.2095111
https://doi.org/10.1145/2461381.2461402
https://dl.acm.org/doi/10.5555/2893711.2893732

BIBLIOGRAPHY 167

[101] Chenyang Lu, Abusayeed Saifullah, Bo Li, Mo Sha, Humberto Gonzalez, Dolvara
Gunatilaka, Chengjie Wu, Lanshun Nie, and Yixin Chen. Real-Time Wireless
Sensor-Actuator Networks for Industrial Cyber-Physical Systems. Proceedings
of the IEEE, 104(5):1013–1024, 2016. doi:10.1109/JPROC.2015.2497161.

[102] Jiakang Lu and Kamin Whitehouse. Flash Flooding: Exploiting the Capture
Effect for Rapid Flooding in Wireless Sensor Networks. In IEEE International
Conference on Computer Communications (INFOCOM), pages 2491–2499, Rio de
Janeiro, Brazil, 2009. doi:10.1109/INFCOM.2009.5062177.

[103] Michael Luby. LT Codes. In IEEE Symposium on Foundations of Computer
Science (FOCS), pages 271–282, Vancouver, British Columbia, Canada, 2002.
doi:10.1109/SFCS.2002.1181950.

[104] Rogelio Luck and Asok Ray. An Observer-based Compensator for Distributed
Delays. Automatica, 26(5):903–908, 1990. doi:10.1016/0005-1098(90)90007-5.

[105] Jan Lunze. Feedback Control of Large-Scale Systems. Prentice Hall International
Series in Systems and Control Engineering. Prentice Hall, 1992. ISBN 013318353X.
URL https://books.google.de/books?id=U91SAAAAMAAJ.

[106] Jan Lunze. Synchronization of Heterogeneous Agents. IEEE Transactions on
Automatic Control, 57(11):2885–2890, 2012. doi:10.1109/TAC.2012.2191332.

[107] Jan Lunze, Frank Allgöwer, Mathias Bürger, Ozan Demir, Uwe Helmke, Anna
von Heusinger, and René Schuh. Multi-agent Systems. In Control Theory of
Digitally Networked Dynamic Systems, pages 263–324. Springer International
Publishing, 2014. doi:10.1007/978-3-319-01131-8_6.

[108] Michele Luvisotto, Zhibo Pang, and Dacfey Dzung. Ultra High Perfor-
mance Wireless Control for Critical Applications: Challenges and Direc-
tions. IEEE Transactions on Industrial Informatics, 13(3):1448–1459, 2017.
doi:10.1109/TII.2016.2617459.

[109] Jerome Peter Lynch, Yang Wang, R. Andrew Swartz, Kung-Chun Lu, and Chin-
Hsiung Loh. Implementation of a closed-loop structural control system using
wireless sensor networks. Structural Control and Health Monitoring, 15(4):518–
539, 2008. doi:10.1002/stc.214.

[110] Yehan Ma and Chenyang Lu. Efficient Holistic Control over Industrial Wireless
Sensor-Actuator Networks. In IEEE International Conference on Industrial Internet
(ICII), pages 89–98, Seattle, Washington, USA, 2018. doi:10.1109/ICII.2018.00018.

[111] Yehan Ma, Dolvara Gunatilaka, Bo Li, Humberto Gonzalez, and Chenyang
Lu. Holistic Cyber-Physical Management for Dependable Wireless Control
Systems. ACM Transactions on Cyber-Physical Systems, 3(1):3:1–3:25, 2018.
doi:10.1145/3185510.

https://doi.org/10.1109/JPROC.2015.2497161
https://doi.org/10.1109/INFCOM.2009.5062177
https://doi.org/10.1109/SFCS.2002.1181950
https://doi.org/10.1016/0005-1098(90)90007-5
https://books.google.de/books?id=U91SAAAAMAAJ
https://doi.org/10.1109/TAC.2012.2191332
https://doi.org/10.1007/978-3-319-01131-8_6
https://doi.org/10.1109/TII.2016.2617459
https://doi.org/10.1002/stc.214
https://doi.org/10.1109/ICII.2018.00018
https://doi.org/10.1145/3185510

168 BIBLIOGRAPHY

[112] Yehan Ma, Chenyang Lu, and Yebin Wang. Efficient Holistic Control: Self-
awareness across Controllers and Wireless Networks. ACM Transactions on
Cyber-Physical Systems, 4(4):41:1–41:27, 2020. doi:10.1145/3371500.

[113] Fabian Mager, Johannes Neumann, Carsten Herrmann, Marco Zimmerling,
and Frank Fitzek. All-to-All Communication in Multi-Hop Wireless Net-
works with Mixer: Poster Abstract. In ACM Conference on Embedded Net-
worked Sensor Systems (SenSys), pages 360–361, Stanford, California, USA, 2016.
doi:10.1145/2994551.2996706.

[114] Fabian Mager, Carsten Herrmann, and Marco Zimmerling. One for All, All for
One: Toward Efficient Many-to-Many Broadcast in Dynamic Wireless Networks.
In ACMWorkshop on Hot Topics in Wireless (HotWireless), pages 19–23, Snowbird,
Utah, USA, 2017. doi:10.1145/3127882.3127884.

[115] Prasanta Chandra Mahalanobis. On the Generalised Distance in Statistics.
Proceedings of the National Institute of Sciences of India, 2(1):49–55, 1936.
doi:10.1007/s13171-019-00164-5.

[116] Mohammad Hossein Mamduhi, Domagoj Tolić, and Sandra Hirche. Robust
Event-based Data Scheduling for Resource Constrained Networked Control
Systems. In American Control Conference (ACC), pages 4695–4701, Chicago,
Illinois, USA, 2015. doi:10.1109/ACC.2015.7172069.

[117] Mohammad Hossein Mamduhi, Adam Molin, Domagoj Tolić, and San-
dra Hirche. Error-Dependent Data Scheduling in Resource-Aware
Multi-Loop Networked Control Systems. Automatica, 81:209–216, 2017.
doi:10.1016/j.automatica.2017.03.005.

[118] Justin Manweiler, Naveen Santhapuri, Souvik Sen, Romit Roy Choudhury,
Srihari Nelakuditi, and Kamesh Munagala. Order Matters: Transmission
Reordering in Wireless Networks. In International Conference on Mobile
Computing and Networking (MobiCom), pages 61–72, Beijing, China, 2009.
doi:10.1145/1614320.1614328.

[119] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The Flooding
Time Synchronization Protocol. In International Conference on Embedded Net-
worked Sensor Systems (SenSys), pages 39–49, Baltimore, Maryland, USA, 2004.
doi:10.1145/1031495.1031501.

[120] José Mario Mastrangelo, Dominik Baumann, and Sebastian Trimpe. Predictive
Triggering for Distributed Control of Resource Constrained Multi-agent Systems.
IFAC-PapersOnLine, 52(20):79–84, 2019. doi:10.1016/j.ifacol.2019.12.130.

[121] Manuel Mazo Jr., Adolfo Anta, and Paulo Tabuada. An ISS self-triggered
implementation of linear controllers. Automatica, 46(8):1310–1314, 2010.
doi:10.1016/j.automatica.2010.05.009.

https://doi.org/10.1145/3371500
https://doi.org/10.1145/2994551.2996706
https://doi.org/10.1145/3127882.3127884
https://doi.org/10.1007/s13171-019-00164-5
https://doi.org/10.1109/ACC.2015.7172069
https://doi.org/10.1016/j.automatica.2017.03.005
https://doi.org/10.1145/1614320.1614328
https://doi.org/10.1145/1031495.1031501
https://doi.org/10.1016/j.ifacol.2019.12.130
https://doi.org/10.1016/j.automatica.2010.05.009

BIBLIOGRAPHY 169

[122] Greg McMillan. Is Wireless Process Control Ready for Prime Time?,
2009. URL https://www.controlglobal.com/home/article/11381703/

is-wireless-process-control-ready-for-prime-time. Accessed: 2022-
12-13.

[123] Sean P. Meyn and Richard L. Tweedie. Markov Chains and Stochastic Stability.
Springer Science & Business Media, 2012. ISBN 9781447132677. URL https:

//books.google.de/books?id=LlTlBwAAQBAJ&dq.

[124] Marek Miskowicz. Event-Based Control and Signal Processing. CRC Press,
2018. ISBN 9781482256567. URL https://books.google.de/books?id=b_

QYCwAAQBAJ&dq.

[125] Venkata Prashant Modekurthy and Abusayeed Saifullah. Online Period
Selection for Wireless Control Systems. In IEEE International Conference
on Industrial Internet (ICII), pages 170–179, Orlando, Florida, USA, 2019.
doi:10.1109/ICII.2019.00042.

[126] Venkata Prashant Modekurthy, Abusayeed Saifullah, and Sanjay Madria.
DistributedHART: A Distributed Real-Time Scheduling System for Wire-
lessHART Networks. In IEEE Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS), pages 216–227, Montreal, Quebec, Canada, 2019.
doi:10.1109/RTAS.2019.00026.

[127] Mobashir Mohammad and Mun Choon Chan. Codecast: Supporting Data Driven
In-network Processing for Low-power Wireless Sensor Networks. In ACM/IEEE
International Conference on Information Processing in Sensor Networks (IPSN),
pages 72–83, Porto, Portugal, 2018. doi:10.1109/IPSN.2018.00014.

[128] Adam Molin and Sandra Hirche. Optimal Design of Decentralized Event-
triggered Controllers for Large-scale Systems with Contention-based Commu-
nication. In IEEE Conference on Decision and Control (CDC), pages 4710–4716,
Orlando, Florida, USA, 2011. doi:10.1109/CDC.2011.6161215.

[129] Damon Mosk-Aoyama and Devavrat Shah. Information Dissemination via
Network Coding. In IEEE International Symposium on Information Theory (ISIT),
pages 1748–1752, Seattle, Washington, USA, 2006. doi:10.1109/ISIT.2006.261654.

[130] Luca Mottola and Gian Pietro Picco. Programming Wireless Sensor Networks:
Fundamental Concepts and State of the Art. ACM Computing Surveys, 43(3):
19:1–19:51, 2011. doi:10.1145/1922649.1922656.

[131] Bobak Nazer and Michael Gastpar. Compute-and-Forward: Harnessing Interfer-
ence Through Structured Codes. IEEE Transactions on Information Theory, 57
(10):6463–6486, 2011. doi:10.1109/TIT.2011.2165816.

[132] RCR Wirelesss News. Amazon’s ambitions will push delivery drones’ battery
lives to the limit andmaybe beyond, 2016. URL http://www.rcrwireless.com/
20160802/europe/five-challenges-drones-tag28. Accessed: 2022-12-13.

https://www.controlglobal.com/home/article/11381703/is-wireless-process-control-ready-for-prime-time
https://www.controlglobal.com/home/article/11381703/is-wireless-process-control-ready-for-prime-time
https://books.google.de/books?id=LlTlBwAAQBAJ&dq
https://books.google.de/books?id=LlTlBwAAQBAJ&dq
https://books.google.de/books?id=b_QYCwAAQBAJ&dq
https://books.google.de/books?id=b_QYCwAAQBAJ&dq
https://doi.org/10.1109/ICII.2019.00042
https://doi.org/10.1109/RTAS.2019.00026
https://doi.org/10.1109/IPSN.2018.00014
https://doi.org/10.1109/CDC.2011.6161215
https://doi.org/10.1109/ISIT.2006.261654
https://doi.org/10.1145/1922649.1922656
https://doi.org/10.1109/TIT.2011.2165816
http://www.rcrwireless.com/20160802/europe/five-challenges-drones-tag28
http://www.rcrwireless.com/20160802/europe/five-challenges-drones-tag28

170 BIBLIOGRAPHY

[133] Fredrik Österlind and AdamDunkels. Approaching the Maximum 802.15.4 Multi-
hop Throughput. In Workshop on Embedded Networked Sensors (HotEmNets),
Charlottesville, Virginia, USA, 2008. URL https://www.diva-portal.org/

smash/record.jsf?pid=diva2%3A1042468&d.

[134] Pouya Ostovari, Jie Wu, and Abdallah Khreishah. Network Coding Techniques
for Wireless and Sensor Networks, pages 129–162. Springer Berlin Heidelberg,
2014. ISBN 9783642400094. doi:10.1007/978-3-642-40009-4_5.

[135] Pangun Park, Sinem Coleri Ergen, Carlo Fischione, Chenyang Lu, and
Karl Henrik Johansson. Wireless Network Design for Control Systems: A
Survey. IEEE Communications Surveys & Tutorials, 20(2):978–1013, 2018.
doi:10.1109/COMST.2017.2780114.

[136] Nicholas J. Ploplys, Paul A. Kawka, and Andrew G. Alleyne. Closed-Loop
Control over Wireless Networks. IEEE Control Systems Magazine, 24(3):58–71,
2004. doi:10.1109/MCS.2004.1299533.

[137] Valentin Poirot, Beshr Al Nahas, and Olaf Landsiedel. Paxos Made Wireless:
Consensus in the Air. In International Conference on Embedded Wireless Systems
and Networks (EWSN), pages 1–12, Beijing, China, 2019. URL https://dl.acm.

org/doi/10.5555/3324320.3324322.

[138] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: Enabling Ultra-
Low Power Wireless Research. In International Symposium on Information
Processing in Sensor Networks (IPSN), pages 364–369, Boise, Idaho, USA, 2005.
doi:10.1109/IPSN.2005.1440950.

[139] Michal Prauzek, Jaromir Konecny, Monika Borova, Karolina Janosova, Jakub
Hlavica, and Petr Musilek. Energy Harvesting Sources, Storage Devices and
System Topologies for Environmental Wireless Sensor Networks: A Review.
Sensors, 18(8):1–22, 2018. doi:10.3390/s18082446.

[140] James A. Preiss, Wolfgang Hönig, Gaurav S. Sukhatme, and Nora Ayanian.
Crazyswarm: A Large Nano-Quadcopter Swarm. In IEEE International Con-
ference on Robotics and Automation (ICRA), pages 3299–3304, Singapore, 2017.
doi:10.1109/ICRA.2017.7989376.

[141] Quanser Inc. IP02 - Self-Erecting Single Inverted Pendulum - Linear Experiment
#6: PV and LQR Control. Instructor Manual, 2012.

[142] Daniel E. Quevedo, Anders Ahlén, Alex S. Leong, and Subhrakanti Dey. On
Kalman filtering over fading wireless channels with controlled transmission
powers. Automatica, 48(7):1306–1316, 2012. doi:10.1016/j.automatica.2012.03.025.

https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1042468&d
https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1042468&d
https://doi.org/10.1007/978-3-642-40009-4_5
https://doi.org/10.1109/COMST.2017.2780114
https://doi.org/10.1109/MCS.2004.1299533
https://dl.acm.org/doi/10.5555/3324320.3324322
https://dl.acm.org/doi/10.5555/3324320.3324322
https://doi.org/10.1109/IPSN.2005.1440950
https://doi.org/10.3390/s18082446
https://doi.org/10.1109/ICRA.2017.7989376
https://doi.org/10.1016/j.automatica.2012.03.025

BIBLIOGRAPHY 171

[143] Hariharan Rahul, Haitham Hassanieh, and Dina Katabi. SourceSync: A
Distributed Wireless Architecture for Exploiting Sender Diversity. In Con-
ference on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications (SIGCOMM), pages 171–182, New Delhi, India, 2010.
doi:10.1145/1851182.1851204.

[144] Ragunathan Rajkumar, Insup Lee, Lui Sha, and John Anthony Stankovic.
Cyber-Physical Systems: The Next Computing Revolution. In Design
Automation Conference (DAC), pages 731–736, Anaheim, California, 2010.
doi:10.1145/1837274.1837461.

[145] Chithrupa Ramesh, Henrik Sandberg, and Karl Henrik Johansson. Performance
Analysis of a Network of Event-Based Systems. IEEE Transactions on Automatic
Control, 61(11):3568–3573, 2016. doi:10.1109/TAC.2016.2523422.

[146] Federico Ramponi, Debasish Chatterjee, Andreas Milias-Argeitis, Peter
Hokayem, and John Lygeros. Attaining Mean Square Boundedness of
a Marginally Stable Stochastic Linear System With a Bounded Control
Input. IEEE Transactions on Automatic Control, 55(10):2414–2418, 2010.
doi:10.1109/TAC.2010.2054850.

[147] Mohsin Raza, Nauman Aslam, Hoa Le-Minh, Sajjad Hussain, Yue Cao, and
Noor Muhammad Khan. A Critical Analysis of Research Potential, Challenges,
and Future Directives in Industrial Wireless Sensor Networks. IEEE Communi-
cations Surveys & Tutorials, 20(1):39–95, 2018. doi:10.1109/COMST.2017.2759725.

[148] Matt Rich and Nicola Elia. Optimal mean-square performance for MIMO net-
worked systems. In American Control Conference (ACC), pages 6040–6045,
Chicago, Illinois, USA, 2015. doi:10.1109/ACC.2015.7172288.

[149] Coen Roest. Enabling the Chaos Networking Primitive on Bluetooth LE.
Master’s thesis, TU Delft, 2015. URL http://resolver.tudelft.nl/uuid:

95f50b13-6af5-4bb3-83ef-84b065e13682.

[150] Abusayeed Saifullah, Sriram Sankar, Jie Liu, Chenyang Lu, Ranveer Chandra,
and Bodhi Priyantha. CapNet: A Real-Time Wireless Management Network
for Data Center Power Capping. In IEEE Real-Time Systems Symposium (RTSS),
pages 334–345, Rome, Italy, 2014. doi:10.1109/RTSS.2014.35.

[151] Carlos Santos, Manuel Mazo Jr., and Felipe Espinosa. Adaptive self-
triggered control of a remotely operated P3-DX robot: Simulation and
experimentation. Robotics and Autonomous Systems, 62(6):847–854, 2014.
doi:10.1016/j.robot.2014.01.010.

[152] Carlos Santos, Felipe Espinosa, Enrique Santiso, and Manuel Mazo Jr. Aperiodic
Linear Networked Control Considering Variable Channel Delays: Application to
Robots Coordination. Sensors, 15(6):12454–12473, 2015. doi:10.3390/s150612454.

https://doi.org/10.1145/1851182.1851204
https://doi.org/10.1145/1837274.1837461
https://doi.org/10.1109/TAC.2016.2523422
https://doi.org/10.1109/TAC.2010.2054850
https://doi.org/10.1109/COMST.2017.2759725
https://doi.org/10.1109/ACC.2015.7172288
http://resolver.tudelft.nl/uuid:95f50b13-6af5-4bb3-83ef-84b065e13682
http://resolver.tudelft.nl/uuid:95f50b13-6af5-4bb3-83ef-84b065e13682
https://doi.org/10.1109/RTSS.2014.35
https://doi.org/10.1016/j.robot.2014.01.010
https://doi.org/10.3390/s150612454

172 BIBLIOGRAPHY

[153] Luca Schenato and Federico Fiorentin. Average TimeSynch: A consensus-based
protocol for clock synchronization in wireless sensor networks. Automatica, 47
(9):1878–1886, 2011. doi:10.1016/j.automatica.2011.06.012.

[154] Luca Schenato and Giovanni Gamba. A distributed consensus protocol for
clock synchronization in wireless sensor network. In IEEE Conference on Deci-
sion and Control (CDC), pages 2289–2294, New Orleans, Louisiana, USA, 2007.
doi:10.1109/CDC.2007.4434671.

[155] Craig B. Schindler, ThomasWatteyne, Xavier Vilajosana, and Kristofer S. J. Pister.
Implementation and Characterization of a Multi-hop 6TiSCH Network for Exper-
imental Feedback Control of an Inverted Pendulum. In International Symposium
on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt),
pages 1–8, Paris, France, 2017. doi:10.23919/WIOPT.2017.7959925.

[156] Fred B. Schneider. Implementing Fault-Tolerant Services Using the State Ma-
chine Approach: A Tutorial. ACM Computing Surveys, 22(4):299–319, 1990.
doi:10.1145/98163.98167.

[157] Markus Schuß, Carlo Alberto Boano, Manuel Weber, and Kay Römer. A Com-
petition to Push the Dependability of Low-Power Wireless Protocols to the
Edge. In International Conference on Embedded Wireless Systems and Networks
(EWSN), pages 54–65, Uppsala, Sweden, 2017. URL https://dl.acm.org/doi/

10.5555/3108009.3108018.

[158] Fanrong Shi, Xianguo Tuo, Lili Ran, Zhenwen Ren, and Simon X. Yang. Fast
Convergence Time Synchronization in Wireless Sensor Networks Based on
Average Consensus. IEEE Transactions on Industrial Informatics, 16(2):1120–1129,
2020. doi:10.1109/TII.2019.2936518.

[159] Joris Sijs, Benjamin Noack, and Uwe D. Hanebeck. Event-based State Estimation
with Negative Information. In International Conference on Information Fusion
(FUSION), pages 2192–2199, Istanbul, Turkey, 2013. URL https://ieeexplore.

ieee.org/abstract/document/6641279.

[160] Bruno Sinopoli, Luca Schenato, Massimo Franceschetti, Kameshwar Poolla,
Michael I. Jordan, and Shankar S. Sastry. Kalman Filtering With Intermittent
Observations. IEEE Transactions on Automatic Control, 49(9):1453–1464, 2004.
doi:10.1109/TAC.2004.834121.

[161] Francesco Smarra, Alessandro D’Innocenzo, and Maria Domenica Di Benedetto.
Optimal co-design of control , scheduling and routing in multi-hop control
networks. In IEEE Conference on Decision and Control (CDC), pages 1960–1965,
Maui, Hawaii, USA, 2012. doi:10.1109/CDC.2012.6426249.

https://doi.org/10.1016/j.automatica.2011.06.012
https://doi.org/10.1109/CDC.2007.4434671
https://doi.org/10.23919/WIOPT.2017.7959925
https://doi.org/10.1145/98163.98167
https://dl.acm.org/doi/10.5555/3108009.3108018
https://dl.acm.org/doi/10.5555/3108009.3108018
https://doi.org/10.1109/TII.2019.2936518
https://ieeexplore.ieee.org/abstract/document/6641279
https://ieeexplore.ieee.org/abstract/document/6641279
https://doi.org/10.1109/TAC.2004.834121
https://doi.org/10.1109/CDC.2012.6426249

BIBLIOGRAPHY 173

[162] Kannan Srinivasan, Maria A. Kazandjieva, Saatvik Agarwal, and Philip Levis. The
𝛽-Factor: Measuring Wireless Link Burstiness. In ACM Conference on Embedded
Networked Sensor Systems (SenSys), pages 29–42, Raleigh, North Carolina, USA,
2008. doi:10.1145/1460412.1460416.

[163] Kannan Srinivasan, Prabal Dutta, Arsalan Tavakoli, and Philip Levis. An Empir-
ical Study of Low-Power Wireless. ACM Transactions on Sensor Networks, 6(2):
16:1–16:49, 2010. doi:10.1145/1689239.1689246.

[164] John Anthony Stankovic, Tarek Farouk Abdelzaher, Chenyang Lu, Lui Sha,
and Jennifer C. Hou. Real-Time Communication and Coordination in Em-
bedded Sensor Networks. Proceedings of the IEEE, 91(7):1002–1022, 2003.
doi:10.1109/JPROC.2003.814620.

[165] Aleksandar Stanoev, Adnan Aijaz, Anthony Portelli, and Michael Baddeley.
Demo: Closed-Loop Control over Wireless - Remotely Balancing an Inverted
Pendulum on Wheels. In International Conference on Embedded Wireless Systems
and Networks (EWSN), pages 195–197, Lyon, France, 2020. URL https://dl.

acm.org/doi/10.5555/3400306.3400342.

[166] Felix Sutton, Marco Zimmerling, Reto Da Forno, Roman Lim, Tonio Gsell,
Georgia Giannopoulou, Federico Ferrari, Jan Beutel, and Lothar Thiele. Bolt:
A Stateful Processor Interconnect. In ACM Conference on Embedded Net-
worked Sensor Systems (SenSys), pages 267–280, Seoul, South Korea, 2015.
doi:10.1145/2809695.2809706.

[167] Shuo Tian, Wenbo Yang, Jehane Michael Le Grange, Peng Wang, Wei Huang,
and Zhewei Ye. Smart healthcare: making medical care more intelligent. Global
Health Journal, 3(3):62–65, 2019. doi:10.1016/j.glohj.2019.07.001.

[168] Gilman Tolle, Joseph Polastre, Robert Szewczyk, David Culler, Neil Turner, Kevin
Tu, Stephen Burgess, Todd Dawson, Phil Buonadonna, David Gay, and Wei
Hong. A Macroscope in the Redwoods. In International Conference on Embedded
Networked Sensor Systems (SenSys), pages 51–63, San Diego, California, USA,
2005. doi:10.1145/1098918.1098925.

[169] Sebastian Trimpe. Predictive and Self Triggering for Event-based State Estima-
tion. In IEEE Conference on Decision and Control (CDC), pages 3098–3105, Las
Vegas, Nevada, USA, 2016. doi:10.1109/CDC.2016.7798733.

[170] Sebastian Trimpe and Dominik Baumann. Resource-Aware IoT Control: Saving
Communication Through Predictive Triggering. IEEE Internet of Things Journal,
6(3):5013–5028, 2019. doi:10.1109/JIOT.2019.2894628.

[171] Sebastian Trimpe and Raffaello D’Andrea. The Balancing Cube: A Dynamic
Sculpture as Test Bed for Distributed Estimation and Control. IEEE Control
Systems Magazine, 32(6):48–75, 2012. doi:10.1109/MCS.2012.2214135.

https://doi.org/10.1145/1460412.1460416
https://doi.org/10.1145/1689239.1689246
https://doi.org/10.1109/JPROC.2003.814620
https://dl.acm.org/doi/10.5555/3400306.3400342
https://dl.acm.org/doi/10.5555/3400306.3400342
https://doi.org/10.1145/2809695.2809706
https://doi.org/10.1016/j.glohj.2019.07.001
https://doi.org/10.1145/1098918.1098925
https://doi.org/10.1109/CDC.2016.7798733
https://doi.org/10.1109/JIOT.2019.2894628
https://doi.org/10.1109/MCS.2012.2214135

174 BIBLIOGRAPHY

[172] Matteo Trobinger, Gabriel de Albuquerque Gleizer, Timofei Istomin, Manuel
Mazo Jr., Amy L. Murphy, and Gian Pietro Picco. The Wireless Control Bus:
Enabling Efficient Multi-Hop Event-Triggered Control with Concurrent Trans-
missions. ACM Transactions on Cyber-Physical Systems, 6(1):4:1–4:29, 2021.
doi:10.1145/3485467.

[173] Roman Trüb, Reto Da Forno, Lukas Sigrist, Lorin Mühlebach, Andreas Biri, Jan
Beutel, and Lothar Thiele. FlockLab 2: Multi-Modal Testing and Validation
for Wireless IoT. In Workshop on Benchmarking Cyber-Physical Systems and
Internet of Things (CPS-IoTBench), pages 1–7, London, UK, 2020. doi:10.3929/ethz-
b-000442038.

[174] Manel Velasco, Josep M. Fuertes, and Pau Martí. The Self Triggered Task Model
for Real-Time Control Systems. InWork-in-Progress Session of the IEEE Real-Time
Systems Symposium (RTSS), pages 67–70, Cancun, Mexico, 2003. URL https:

//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.164.3868.

[175] Gregory C. Walsh, Hong Ye, and Linda G. Bushnell. Stability Analysis of Net-
worked Control Systems. IEEE Transactions on Control Systems Technology, 10
(3):438–446, 2002. doi:10.1109/87.998034.

[176] AchimWalter, Robert Finger, Robert Huber, and Nina Buchmann. Smart farming
is key to developing sustainable agriculture. Proceedings of the National Academy
of Sciences, 114(24):6148–6150, 2017. doi:10.1073/pnas.1707462114.

[177] Shiyong Wang, Jiafu Wan, Di Li, and Chunhua Zhang. Implementing Smart
Factory of Industrie 4.0: An Outlook. International Journal of Distributed Sensor
Networks, 12(1):1–10, 2016. doi:10.1155/2016/3159805.

[178] Xiaofeng Wang and Michael D. Lemmon. Self-Triggered Feedback Control
Systems With Finite-Gain L2 Stability. IEEE Transactions on Automatic Control,
54(3):452–467, 2009. doi:10.1109/TAC.2009.2012973.

[179] Thomas Watteyne, Vlado Handziski, Xavier Vilajosana, Simon Duquennoy,
Oliver Hahm, Emmanuel Baccelli, and Adam Wolisz. Industrial Wireless IP-
Based Cyber-Physical Systems. Proceedings of the IEEE, 104(5):1025–1038, 2016.
doi:10.1109/JPROC.2015.2509186.

[180] Geoffrey Werner-Allen, Geetika Tewari, Ankit Patel, Matt Welsh, and Radhika
Nagpal. Firefly-Inspired Sensor Network Synchronicity with Realistic Radio Ef-
fects. In International Conference on Embedded Networked Sensor Systems (SenSys),
pages 142–153, San Diego, California, USA, 2005. doi:10.1145/1098918.1098934.

[181] Kamin Whitehouse, Alec Woo, Fred Jiang, Joseph Polastre, and David Culler.
Exploiting The Capture Effect For Collision Detection And Recovery. In IEEE
Workshop on Embedded Networked Sensors (EmNetS), pages 45–52, Sydney, New
South Wales, Australia, 2005. doi:10.1109/EMNETS.2005.1469098.

https://doi.org/10.1145/3485467
https://doi.org/10.3929/ethz-b-000442038
https://doi.org/10.3929/ethz-b-000442038
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.164.3868
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.164.3868
https://doi.org/10.1109/87.998034
https://doi.org/10.1073/pnas.1707462114
https://doi.org/10.1155/2016/3159805
https://doi.org/10.1109/TAC.2009.2012973
https://doi.org/10.1109/JPROC.2015.2509186
https://doi.org/10.1145/1098918.1098934
https://doi.org/10.1109/EMNETS.2005.1469098

BIBLIOGRAPHY 175

[182] Matthias Wilhelm, Vincent Lenders, and Jens B. Schmitt. On the
Reception of Concurrent Transmissions in Wireless Sensor Networks.
IEEE Transactions on Wireless Communications, 13(12):6756–6767, 2014.
doi:10.1109/TWC.2014.2349896.

[183] Björn Wittenmark, Johan Nilsson, and Martin Törngren. Timing Problems
in Real-time Control Systems. In American Control Conference (ACC), pages
2000–2004, Seattle, Washington, USA, 1995. doi:10.1109/ACC.1995.531240.

[184] Martin Wollschlaeger, Thilo Sauter, and Juergen Jasperneite. The Future of
Industrial Communication: Automation Networks in the Era of the Internet of
Things and Industry 4.0. IEEE Industrial Electronics Magazine, 11(1):17–27, 2017.
doi:10.1109/MIE.2017.2649104.

[185] Junlin Xiong and James Lam. Stabilization of linear systems over
networks with bounded packet loss. Automatica, 43(1):80–87, 2007.
doi:10.1016/j.automatica.2006.07.017.

[186] Maya Yajnik, Sue Moon, Jim Kurose, and Don Towsley. Measurement and
Modelling of the Temporal Dependence in Packet Loss. In IEEE International
Conference on Computer Communications (INFOCOM), pages 345–352, New York,
New York, USA, 1999. doi:10.1109/INFCOM.1999.749301.

[187] Tai C. Yang, Hongnian Yu, M. R. Fei, and L. X. Li. Networked control systems:
a historical review and current research topics. Measurement & Control, 38(1):
12–16, 2005. doi:10.1177/002029400503800101.

[188] Hong Ye, Gregory C. Walsh, and Linda G. Bushnell. Real-Time Mixed-Traffic
Wireless Networks. IEEE Transactions on Industrial Electronics, 48(5):883–890,
2001. doi:10.1109/41.954551.

[189] Dingwen Yuan and Matthias Hollick. Let’s Talk Together: Understanding Con-
current Transmission in Wireless Sensor Networks. In IEEE Conference on Local
Computer Networks (LCN), pages 219–227, Sydney, New South Wales, Australia,
2013. doi:10.1109/LCN.2013.6761237.

[190] Pouria Zand, Supriyo Chatterjea, Kallol Das, and Paul Havinga. Wireless
Industrial Monitoring and Control Networks: The Journey So Far and the
Road Ahead. Journal of Sensor and Actuator Networks, 1(2):123–152, 2012.
doi:10.3390/jsan1020123.

[191] Lixian Zhang, Huijun Gao, and Okyay Kaynak. Network-Induced Constraints
in Networked Control Systems - A Survey. IEEE Transactions on Industrial
Informatics, 9(1):403–416, 2013. doi:10.1109/TII.2012.2219540.

[192] Tianyu Zhang, Tao Gong, Song Han, Qingxu Deng, and Xiaobo Sharon Hu. Fully
Distributed Packet Scheduling Framework for Handling Disturbances in Lossy
Real-Time Wireless Networks. IEEE Transactions on Mobile Computing, 20(2):
502–518, 2021. doi:10.1109/TMC.2019.2950913.

https://doi.org/10.1109/TWC.2014.2349896
https://doi.org/10.1109/ACC.1995.531240
https://doi.org/10.1109/MIE.2017.2649104
https://doi.org/10.1016/j.automatica.2006.07.017
https://doi.org/10.1109/INFCOM.1999.749301
https://doi.org/10.1177/002029400503800101
https://doi.org/10.1109/41.954551
https://doi.org/10.1109/LCN.2013.6761237
https://doi.org/10.3390/jsan1020123
https://doi.org/10.1109/TII.2012.2219540
https://doi.org/10.1109/TMC.2019.2950913

176 BIBLIOGRAPHY

[193] Wei Zhang, Michael S. Branicky, and Stephen M. Phillips. Stability of Net-
worked Control Systems. IEEE Control Systems Magazine, 21(1):84–99, 2001.
doi:10.1109/37.898794.

[194] Marco Zimmerling, Federico Ferrari, Luca Mottola, and Lothar Thiele. On Model-
ing Low-Power Wireless Protocols Based on Synchronous Packet Transmissions.
In IEEE International Symposium on Modelling, Analysis and Simulation of Com-
puter and Telecommunication Systems (MASCOTS), pages 546–555, San Francisco,
California, USA, 2013. doi:10.1109/MASCOTS.2013.76.

[195] Marco Zimmerling, Luca Mottola, Pratyush Kumar, Federico Ferrari, and Lothar
Thiele. Adaptive Real-Time Communication for Wireless Cyber-Physical
Systems. ACM Transactions on Cyber-Physical Systems, 1(2):8:1–8:29, 2017.
doi:10.1145/3012005.

[196] Marco Zimmerling, LucaMottola, and Silvia Santini. Synchronous Transmissions
in Low-Power Wireless: A Survey of Communication Protocols and Network
Services. ACM Computing Surveys, 53(6):121:1–121:39, 2021. doi:10.1145/3410159.

https://doi.org/10.1109/37.898794
https://doi.org/10.1109/MASCOTS.2013.76
https://doi.org/10.1145/3012005
https://doi.org/10.1145/3410159

List of Publications

The following list contains all publications of the author, categorized by conference,
journal, poster, demo, and video publications.

Conference publications

Fabian Mager★, Carsten Herrmann★, and Marco Zimmerling. “One for All, All for One:
Toward Efficient Many-to-Many Broadcast in Dynamic Wireless Networks.” In ACM
Workshop on Hot Topics in Wireless (HotWireless), pages 19–23, Snowbird, Utah, USA,
2017. doi:10.1145/3127882.3127884.
★ Both authors contributed equally to this work.

Carsten Herrmann★, Fabian Mager★, and Marco Zimmerling. “Mixer: Efficient Many-
to-All Broadcast in Dynamic Wireless Mesh Networks.” In ACM Conference on Em-
bedded Networked Sensor Systems (SenSys), pages 145–158, Shenzhen, China, 2018.
doi:10.1145/3274783.3274849.
★ Both authors contributed equally to this work.

Dominik Baumann★, Fabian Mager★, Harsoveet Singh, Marco Zimmerling, and Se-
bastian Trimpe. “Evaluating Low-Power Wireless Cyber-Physical Systems.” In IEEE
Workshop on Benchmarking Cyber-Physical Networks and Systems (CPSBench), pages
13–18, Porto, Portugal, 2018. doi:10.1109/CPSBench.2018.00009.
★ Both authors contributed equally to this work.

Fabian Mager★, Dominik Baumann★, Romain Jacob, Lothar Thiele, Sebastian Trimpe,
and Marco Zimmerling. “Feedback Control Goes Wireless: Guaranteed Stability
over Low-power Multi-hop Networks.” In ACM/IEEE International Conference on
Cyber-Physical Systems (ICCPS), pages 97–108, Montreal, Quebec, Canada, 2019.
doi:10.1145/3302509.3311046. (Best paper award)

★ Both authors contributed equally to this work.

FabianMager, Andreas Biri, Lothar Thiele, andMarco Zimmerling. “Butler: Increasing
the Availability of Low-Power Wireless Communication Protocols.” In International
Conference on Embedded Wireless Systems and Networks (EWSN), pages 108–119, Linz,
Austria, 2022. https://dl.acm.org/doi/10.5555/3578948.3578958.

Andreas Biri, Reto Da Forno, Tobias Kuonen, Fabian Mager, Marco Zimmerling, and
Lothar Thiele. “Hydra: Concurrent Coordination for Fault-tolerant Networking.” In
ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN),
pages 219–232, San Antonio, Texas, USA, 2023. doi:10.1145/3583120.3587047

https://doi.org/10.1145/3127882.3127884
https://doi.org/10.1145/3274783.3274849
https://doi.org/10.1109/CPSBench.2018.00009
https://doi.org/10.1145/3302509.3311046
https://dl.acm.org/doi/10.5555/3578948.3578958
https://doi.org/10.1145/3583120.3587047

178 BIBLIOGRAPHY

Journal publications

Dominik Baumann★, Fabian Mager★, Romain Jacob, Lothar Thiele, Marco Zimmerling,
and Sebastian Trimpe. “Fast Feedback Control over Multi-hop Wireless Networks with
Mode Changes and Stability Guarantees.” ACM Transactions on Cyber-Physical Systems,
4(2):18:1–18:32, 2019. doi:10.1145/3361846.
★ Both authors contributed equally to this work.

Dominik Baumann★, Fabian Mager★, Marco Zimmerling, and Sebastian Trimpe.
“Control-Guided Communication: Efficient Resource Arbitration and Allocation in
Multi-Hop Wireless Control Systems.” IEEE Control Systems Letters, 4(1):127–132, 2020.
doi:10.1109/LCSYS.2019.2922188.
★ Both authors contributed equally to this work.

Dominik Baumann★, Fabian Mager★, Ulf Wetzker, Lothar Thiele, Marco Zimmer-
ling, and Sebastian Trimpe. “Wireless Control for Smart Manufacturing: Recent
Approaches and Open Challenges.” Proceedings of the IEEE, 109(4):441–467, 2021.
doi:10.1109/JPROC.2020.3032633.
★ Both authors contributed equally to this work.

Fabian Mager★, Dominik Baumann★, Carsten Herrmann, Sebastian Trimpe, and Marco
Zimmerling. “Scaling Beyond Bandwidth Limitations: Wireless Control With Stability
Guarantees Under Overload.” ACM Transactions on Cyber-Physical Systems, 6(3):20:1–
20:30, 2022. doi:10.1145/3502299.
★ Both authors contributed equally to this work.

Posters

Fabian Mager, Johannes Neumann, Carsten Herrmann, Marco Zimmerling, and Frank
Fitzek. “All-to-All Communication in Multi-HopWireless Networks with Mixer: Poster
Abstract.” In ACM Conference on Embedded Network Sensor Systems (SenSys), pages
360–361, Stanford, California, USA, 2016. doi:10.1145/2994551.2996706.

FabianMager★, Dominik Baumann★, Sebastian Trimpe, andMarco Zimmerling. “Poster
Abstract: Toward Fast Closed-Loop Control over Multi-Hop Low-Power Wireless
Networks.” In ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN), pages 158–159, Porto, Portugal, 2018. doi:10.1109/IPSN.2018.00042.
★ Both authors contributed equally to this work.

Demos

Fabian Mager★, Dominik Baumann★, Romain Jacob, Lothar Thiele, Marco Zimmerling,
and Sebastian Trimpe. “Demo Abstract: Fast Feedback Control and Coordination with
Mode Changes for Wireless Cyber-Physical Systems.” In International Conference on
Information Processing in Sensor Networks (IPSN), pages 340–341, Montreal, Quebec,
Canada, 2019. doi:10.1145/3302506.3312483. (Best demo award)

★ Both authors contributed equally to this work.

https://doi.org/10.1145/3361846
https://doi.org/10.1109/LCSYS.2019.2922188
https://doi.org/10.1109/JPROC.2020.3032633
https://doi.org/10.1145/3502299
https://doi.org/10.1145/2994551.2996706
https://doi.org/10.1109/IPSN.2018.00042
https://doi.org/10.1145/3302506.3312483

BIBLIOGRAPHY 179

Fabian Mager, Romain Jacob, Reto Da Forno, and Marco Zimmerling. “Competition:
Low-Power Wireless Bus Baseline.” In International Conference on Embedded Wireless
Systems and Networks (EWSN), pages 292–293, Beijing, China, 2019. https://dl.acm.
org/doi/10.5555/3324320.3324386.

Videos

Wireless Control for Cyber-physical Systems:
https://www.youtube.com/watch?v=Fr2YNLPaUpY

Remote Stabilization, Mobility Experiment:
https://www.youtube.com/watch?v=19xPHjnobkY

Feedback Control Goes Wireless, Demonstration at CPS-IoT Week 2019:
https://www.youtube.com/watch?v=AtULmfGkVCE

Feedback Control goes Wireless, Presentation at ICCPS 2019:
https://www.youtube.com/watch?v=1i6oBsat_Ww

https://dl.acm.org/doi/10.5555/3324320.3324386
https://dl.acm.org/doi/10.5555/3324320.3324386
https://www.youtube.com/watch?v=Fr2YNLPaUpY
https://www.youtube.com/watch?v=19xPHjnobkY
https://www.youtube.com/watch?v=AtULmfGkVCE
https://www.youtube.com/watch?v=1i6oBsat_Ww

	Abstract
	Acknowledgements
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation
	Application Requirements
	Challenges
	State of the Art
	Contributions and Road Map

	Mixer: Efficient Many-to-All Broadcast in Dynamic Wireless Mesh Networks
	Introduction
	Overview
	Basic Operation and Terminology
	Design Challenges
	Phases Within a Mixer Round

	Design
	Core Architecture
	Processing Layer
	Transport Layer
	Efficient Run-Time Operation

	Implementation
	Evaluation
	Performance
	Network Dynamics: Node Failures
	Network Dynamics: Node Mobility
	Potential of Faster CPUs and Physical Layers

	Discussion
	Related Work

	Butler: Increasing the Availability of Low-Power Wireless Communication Protocols
	Introduction
	Motivation and Background
	Design
	Butler Overview
	Butler in Detail

	Analysis
	Correctness of Butler
	Network Partitions
	Discussion

	Implementation
	Evaluation
	Experimental Settings
	Butler in Action
	Butler's Performance and Efficiency
	Making an Existing Protocol Available Through Butler

	Related Work

	Feedback Control Goes Wireless: Guaranteed Stability over Low-Power Multi-Hop Networks
	Introduction
	Related Work
	Problem Setting and Approach
	Wireless Embedded System Design
	Low-Power Wireless Protocol
	Hardware Platform
	Scheduling Framework
	Essential Properties and Jitter Analysis

	Control Design and Analysis
	Model of Wireless Control System
	Controller Design
	Stability Analysis
	Multi-Agent Synchronization

	Experimental Evaluation
	Cyber-Physical Systems Testbed
	Multi-Hop Stabilization
	Multi-Hop Synchronization
	Impact of Update Interval
	Resilience to Message Loss

	Control Details
	Proof of Theorem 3
	Stabilizing Controllers
	Synchronization

	Control-Guided Communication: Efﬁcient Resource Arbitration and Allocation in Multi-Hop Wireless Control Systems
	Introduction
	Problem Setting
	Co-Design Approach
	Wireless Communication System Design
	Self-Triggered Control Design
	Distributed Control
	Self-Triggered Approach

	Experimental Evaluation
	Scenario and Metrics
	Efficient Resource Arbitration and Allocation
	Control Performance vs. Efficiency vs. Flexibility

	Scaling Beyond Bandwidth Limitations: Wireless Control With Stability Guarantees Under Overload
	Introduction
	Problem and Related Work
	Problem Formulation
	Related Work

	Overview of Co-Design Approach
	Predictive Triggering and Control System
	Control System Model
	Control Architecture
	Priority Measure

	Adaptive Communication System
	Communication Support for Scalable Multi-Agent Systems
	Support for Predictive Triggering

	Integration and Stability Analysis
	Implementation Aspects
	Stability Analysis

	Testbed Experiments
	Wireless Cyber-Physical Systems Testbed
	Scenario and Settings
	Results

	Proof of Theorem 4
	Preliminaries
	Stochastic Stability

	Usage of the Network Bandwidth for Control
	Periodic
	Predictive

	Conclusion and Outlook
	Contributions
	Future Directions

	Bibliography
	List of Publications

