
Riotee: An Open-source Hardware and Software Platform for the
Battery-free Internet of Things∗

Kai Geissdoerfer†
Nessie Circuits

kai.geissdoerfer@nessie-circuits.de

Marco Zimmerling
TU Darmstadt

marco.zimmerling@tu-darmstadt.de

ABSTRACT
The rapidly growing Internet of Things (IoT) can avoid the high cost
and environmental burden of replacing trillions of batteries by us-
ing sustainable battery-free devices that operate maintenance-free
for decades. To develop battery-free IoT systems, researchers and
makers require a common platform that is versatile, affordable, and
easy to use. However, limited availability and lack of support have
prevented widespread adoption of previous battery-free platforms.
We introduce Riotee, an open-source and commercially available
battery-free platform that includes multiple boards, extensive soft-
ware, and comprehensive documentation. We demonstrate Riotee’s
capabilities through a machine-learning application and present
results from a user study involving students and customers, who
rated its usefulness and usability highly.

CCS CONCEPTS
• Hardware → Sensor devices and platforms; • Computer
systems organization→ Embedded software.

KEYWORDS
Battery-free systems, intermittent computing, sustainability, hard-
ware and software platform, open source, reusable, accessible
ACM Reference Format:
Kai Geissdoerfer and Marco Zimmerling. 2024. Riotee: An Open-source
Hardware and Software Platform for the Battery-free Internet of Things. In
The 22nd ACM Conference on Embedded Networked Sensor Systems (SenSys
’24), November 4–7, 2024, Hangzhou, China. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3666025.3699332

1 INTRODUCTION
The rapid proliferation of embedded devices has led to significant
challenges, particularly in terms of limited battery lifespan, high
installation and maintenance costs, and increasing electronic waste.
Addressing these issues is critical as the number of connected de-
vices is projected to reach one trillion by 2035 [39]. These challenges
hinder the scalability of IoT systems and pose serious environmen-
tal and economic concerns. Therefore, sustainable alternatives are
needed to support the growing ecosystem of connected devices.
∗See https://riotee.nessie-circuits.de for hardware designs, code, and documentation.
†Work performed while at Networked Embedded Systems Lab, cfaed, TU Dresden.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SenSys ’24, November 4–7, 2024, Hangzhou, China
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0697-4/24/11.
https://doi.org/10.1145/3666025.3699332

Figure 1: Riotee hardware. A stamp-sized reflow-solderable mod-
ule, a user-friendly development board, three expansion shields, and
a probe for in-circuit programming and debugging.

Problem. In this context, the community has explored the poten-
tial of battery-free devices, which buffer energy harvested from
ambient sources such as sunlight, motion, and thermal gradients in
small capacitors to power their operation. Over the past decade, re-
searchers have developed various methods for battery-free devices,
yet an accessible, general-purpose platform is still lacking [2].

Validation on real hardware is an integral part of experimental re-
search and education. Similarly, makers and hobbyists rely on well-
defined, easy-to-acquire platforms to develop new applications. For
battery-powered devices, numerous options exist: Arduino, Rasp-
berry Pi, NVIDIA Jetson, etc. These platforms are readily accessible
and cater to the versatile needs of developers and researchers alike.

Unfortunately, none of the existing battery-free platforms meet
these requirements. Commercial battery-free platforms like EnO-
cean STM 400J [32], Wiliot Pixel [33], and Everactive Eversen-
sor [15] are unsuitable for research and education due to undis-
closed hardware designs, proprietary software, and licensing limita-
tions. Conversely, most battery-free platforms used in academia are
custom-made for one specific deployment [1] or method [11, 17, 20].
Because of their narrow focus and lack of documentation and soft-
ware support, these platforms are not easily reusable and accessible.
Our literature review (Section 2) reveals that, despite open-source
hardware designs, the few efforts toward a general-purpose battery-
free platform [3, 16, 21] have not been used beyond the original
paper. The key distinction is that these platforms require assembly
from design files, whereas platforms like Arduino or Raspberry Pi
are available for online purchase.

This shows that while open-sourcing hardware is an important
step, it alone does not make a platform easily usable by others.
Even with well-documented schematics, layouts, and bills of mate-
rials, reproducing a multi-layer printed circuit board (PCB) design

https://orcid.org/0000-0002-4899-7466
https://orcid.org/0000-0003-1450-2506
https://doi.org/10.1145/3666025.3699332
https://riotee.nessie-circuits.de
https://doi.org/10.1145/3666025.3699332


SenSys ’24, November 4–7, 2024, Hangzhou, China Kai Geissdoerfer and Marco Zimmerling

Table 1: State-of-the-art battery-free platforms used in academia. While most battery-free platforms are available as open source, they
are often tailored to a specific application (i.e., deployment scenario or proposed method) and not commercially available. A lack of documentation
and software support further hinders the widespread adoption of existing battery-free platforms.

Name Year General purpose Purchasable Open source Software Documentation

WISP [35] 2008 ✗ ✓ ✓ ✓ ✗

DEBS [20] 2016 ✗ ✗ ✗ ✗ ✗

Flicker [21] 2017 ✓ ✗ ✓ ✗ ✗

Capybara [8] 2018 ✗ ✗ ✓ ✓ ✗

PiBLE [16] 2018 ✓ ✗ ✓ ✗ ✗

BFree [26] 2020 ✗ ✗ ✓ ✓ ✗

Botoks [11] 2020 ✗ ✗ ✓ ✓ ✓

Empire [1] 2020 ✗ ✗ ✗ ✗ ✗

Flync [17] 2021 ✗ ✗ ✓ ✓ ✗

SuperSensor [3] 2023 ✓ ✗ ✓ ✓ ✗

This work: Riotee 2024 ✓ ✓ ✓ ✓ ✓

with numerous unique components and layout-sensitive radio fre-
quency (RF) circuitry is challenging. Variations in design require-
ments between manufacturers and shortages of specific electronic
components often necessitate partial redesigns, which are time-
consuming and require deep technical expertise. Along with long
lead times and high costs for PCB assembly in small quantities,
this makes building a platform from design files nearly as expen-
sive and effort-intensive as designing a new platform from scratch.
Consequently, numerous research groups worldwide invest count-
less hours and substantial portions of their budgets in hardware
development—a significant investment that could otherwise be di-
rected toward advancing science and education. Moreover, many
researchers lack the resources for such endeavors, preventing them
from implementing and evaluating their ideas on real hardware.
Contribution. To tackle this issue and establish a common battery-
free platform for researchers and makers alike, we present Riotee.
Riotee is open-source and commercially available, enabling experi-
mental evaluation of ideas, replication and comparison of results,
and deployment setup without the need for hardware assembly. By
providing this missing piece of foundational infrastructure, Riotee
aims to foster community growth and accelerate progress toward a
sustainable IoT. Overall, we make the following key contributions:
• We design and build the Riotee hardware (Figure 1), consisting
of six units that seamlessly enable battery-free development
from first prototypes to real deployments.

• We design and implement the Riotee software, featuring an
efficient battery-free runtime, various peripheral drivers, two
network protocols, an easy-to-use Arduino API, and extensive
application examples.

• We demonstrate Riotee’s utility through an intermittent deep
neural network (DNN) inference application.

• A systematic user study reveals that both customers and students
highly rate the usefulness and usability of Riotee.

• We provide comprehensive online documentation of the Riotee
hardware and software components, including pinouts, API
reference, in-depth technical descriptions, and getting started
and troubleshooting guides.

2 CURRENT BATTERY-FREE PLATFORMS
Table 1 provides an overview of state-of-the-art battery-free plat-
forms used in academia. It shows that new battery-free platforms
are proposed frequently. But why has none of them been widely
adopted by the research community? One reason is that most plat-
forms have been introduced to validate one specific new method,
compromising on other aspects essential for general-purpose us-
age. For instance, Botoks [11] incorporates a cascaded resistor-
capacitor (RC) timekeeper that occupies 1 square inch of PCB
area, allowing users to trade off measurement range for resolution.
Flync [17] is a platform custom-designed for battery-free device-
to-device communication, featuring a dedicated clock extraction
circuit drawing 5 µW of power. WISP [35] is a radio-frequency
identification (RFID) sensing platform. While available for online
purchase and used in numerous earlier works, it only functions
with a high-powered RFID reader nearby.

A few serious efforts toward a general-purpose battery-free plat-
form have been made in recent years [3, 16, 21]. Unfortunately,
none of these platforms has been used beyond the original paper or
managed to attract a significant user base. We maintain that this is
largely due to insufficient availability of the hardware and lack of
software and documentation, as indicated in Table 1. For example,
Flicker [21] is an ecosystem of plug-in boards based around the
dated MSP430. It caters to various scenarios yet suffers from limited
availability, software support, and documentation. SuperSensor [3],
an advancement of Flicker, facilitates easy component exchange,
including the main microcontroller unit (MCU). However, the Su-
perSensor hardware is not readily available, and reconstructing
it from open-source design files is challenging due to reasons de-
scribed in Section 1.

Our review of the state of the art indicates that a general-purpose,
readily accessible platform for research and education in battery-
free, intermittent systems is still absent. This lack of foundational
infrastructure hinders rigorous evaluations and community growth,
ultimately impeding progress toward a more sustainable future of
computing [2].



Riotee: An Open-source Hardware and Software Platform for the Battery-free Internet of Things SenSys ’24, November 4–7, 2024, Hangzhou, China

3 RIOTEE OVERVIEW
To fill this gap and establish a common battery-free platform, we
design Riotee with the following key goals:
• Availability. To foster widespread adoption, the platform must
be commercially available at an affordable price comparable
to existing battery-powered platforms. For example, Arduino
boards currently sell for between USD 20 and USD 114 [40].
Additionally, hardware design and software should be open-
source, enabling others to study, verify, and modify them.

• Easy of use. To establish a large user community, the platform
must be user-friendly. Thorough documentation of hardware
and software and a development environment based on standard
cross-platform tools are crucial. The time and effort required
to get a simple application up and running must be minimal
to attract new users. Moreover, the platform should support as
much basic functionality as possible, allowing users to focus
on their projects. For example, a developer working on a new
time-keeping solution should not have to write a radio driver.

• Versatility. Battery-free technology is not one-size-fits-all. Dif-
ferent applications require different harvesters, peripherals, and
energy storage capacities. A general-purpose platform should
integrate core components while allowing users to easily adjust
application-specific parameters and hardware components (e.g.,
new types of solar cells and energy storage capacitors).
Moreover, while it is impossible to foresee all use cases, the
platform’s design should consider the needs and requirements
of various sub-fields in battery-free research. For example, many
works on intermittent computing require fast, long-lasting non-
volatile memory [4, 31, 43]. Reactive checkpointing techniques
rely on external notifications of an impending power loss [4,
10, 24]. The emerging field of battery-free networking requires
low-level access to a radio [14, 18, 28]. Researchers working
on energy harvesting-based sensing need access to the voltage
and current of the harvester [25, 37]. Future applications and
deployments of battery-free devices likely require a combination
of all these features [1, 9].

• Deployability. A successful platform must offer a convenient
development board equipped with an on-board debugger, but-
tons, light emitting diodes (LEDs), pin headers, and expansion
boards. While this results in a relatively large platform with
a higher price tag, it is essential for development and testing.
On the other hand, the transition from a prototype to a real
deployment scenario—where size, weight, and cost constraints
are often critical—should be as seamless as possible.
Guided by these design goals, we present Riotee. It is both open-

source and commercially available, aiming to empower researchers
and makers to experimentally evaluate ideas, replicate results, and
set up deployments without the need to build battery-free hardware
first. Riotee consists of multiple boards accompanied by software
and documentation.
Hardware. The Riotee Board (Section 4.1) is an easy-to-use devel-
opment board that combines the key components of a battery-free
device with an on-board programmer, a push button, LEDs, and
a USB-C port. Using the board’s expansion headers, various har-
vesters, capacitors, and sensors can be added by stacking multiple
add-on shields we provide (Section 4.4). The core components of the

Riotee Board—such as the harvesting circuitry, microcontroller, non-
volatile memory, wireless radio, and antenna—are all encapsulated
in a tiny module known as the Riotee Module (Section 4.2). This
module can be reflow-soldered onto a custom PCB and programmed
with the Riotee Probe (Section 4.3) to meet the size, weight, and
cost constraints of real deployments.
Software. The Riotee hardware is accompanied by a well-documen-
ted, open-source software development kit (SDK) that includes a
battery-free runtime (Section 5.1), various peripheral drivers (Sec-
tion 5.2), and several application examples. Furthermore, an Ar-
duino package (Section 5.3) provides a simplified application pro-
gramming interface (API) and cross-platform installation with just
a few mouse clicks.
Documentation. Riotee comes with extensive, well-prepared doc-
umentation. Doxygen-style code comments are combined with
hardware descriptions, pinouts, and examples. These are rendered
together with getting started and troubleshooting guides as a pub-
licly hosted documentation website.

The next two sections detail Riotee’s hardware and software
design, and evaluate key performance characteristics. Section 6
demonstrates the capabilities and utility of Riotee through a real-
world use case, while Section 7 presents a user study that evaluates
the usability of Riotee among customers and students. The results of
this study indicate that both user groups highly rate the usefulness
and usability of Riotee.

4 HARDWARE
This section describes the six boards comprising the Riotee hard-
ware shown in Figure 1, starting with the Riotee Board.

4.1 Riotee Board
The Riotee Board is a user-friendly development board integrating
key battery-free device components with an on-board programmer,
push button, LEDs, USB-C port, and expansion headers. This setup
facilitates rapid prototype creation without soldering or breadboard
wiring. The core of the Riotee Board is the Riotee Module, which
is combined with the same circuitry found on the Riotee Probe
for uploading and debugging code running on the module. The
board’s two 0.1-inch pin headers expose signals for supply voltage,
capacitor voltage, and 11 general-purpose input/output (GPIO) pins
supporting I2C, SPI, and analog sensor applications. These headers
allow connecting custom harvesters, storage capacitors, or periph-
erals and are also used to connect the Riotee Shields. Below, we
describe the Riotee Module, Probe, and Shields in detail.

4.2 Riotee Module
The Riotee Module is a stamp-sized unit (27.2mm by 15.2mm) that
can be soldered onto a user’s PCB with additional circuitry like sen-
sors or harvesters to create deployment-ready battery-free devices
quickly. Figure 2 shows the architecture of the Riotee Module. It
integrates harvesting circuitry, two MCUs, a real-time clock (RTC),
a PCB antenna, and an LED on a compact 4-layer PCB enclosed
in a metal RF shield. The module features breadboard-compatible
castellated holes exposing essential signals, including 11 GPIOs
(D0-D11), two of which can also function as analog inputs (A0, A1).



SenSys ’24, November 4–7, 2024, Hangzhou, China Kai Geissdoerfer and Marco Zimmerling

Figure 2: Architecture of Riotee Module. The Riotee Module integrates energy harvesting, energy storage, power management, non-volatile
memory, a powerful Cortex-M4 processor, and a 2.4GHz BLE-compatible radio into a stamp-sized hardware unit.

Dual microcontroller. The module hosts two MCUs. The first
one, a Nordic Semiconductor nRF52833, has a 64MHz Cortex-M4
with a floating point unit and a low-power 2.4GHz radio with low-
level register access. The Cortex-M4 is significantly faster than
the MSP430 found on most previous battery-free platforms, en-
abling computationally demanding applications like machine learn-
ing inference with minimal current draw. The second MCU, a TI
MSP430FR5962, offers 128 kB of embedded non-volatile FRAM with
virtually unlimited write cycles. Its popularity in the intermittent
computing community supports leveraging existing knowledge
and experience, reusing software components, and ensuring repro-
ducibility and comparability with prior research.

Both MCUs are user-programmable and share access to all mod-
ule components. For example, the capacitor voltage is available
on the on-board analog-to-digital converter (ADC) inputs of both
MCUs. The two MCUs are interconnected via a 4-wire SPI bus and
a handshake line, supporting various configurations. For instance,
the Riotee SDK runs application and networking code on the nRF52,
using the MSP430 as SPI-based non-volatile RAM to retain state
across power outages. Alternatively, users can run application code
on the MSP430 and use the nRF52 as an SPI-controlled radio.
Harvesting circuitry.AnAnalogDevicesMAX20361 boost charger
tracks the maximum power point (MPP) of the harvester from
225mV to 2.5 V and charges three parallel 22 µF 0402-sizedmultilayer
ceramic capacitors (MLCCs) up to 4.7 V. Due to the DC-bias effect
on MLCCs, the three 22 µF capacitors have an effective total capac-
itance of about 11.1 µF at 4.7 V, which is sufficient to continuously
power the nRF52 radio for approximately 1.5ms from a full charge.

This harvesting interface supports any direct current (DC) volt-
age source within the specified input range, including solar panels,
thermoelectric harvesters, DC wind generators, and, after rectifi-
cation, piezoelectric and RF harvesters. The I2C interface of the
MAX20361 allows users to dynamically control the harvesting volt-
age in software. This unique feature enables users to either dy-
namically adjust the parameters of the built-in open-circuit voltage
maximum power point tracking (MPPT) algorithm or implement
and experiment with their own custom on-device MPPT algorithms.

Figure 3: Diagram of resistor network. Using two tri-state GPIO
signals, users can dynamically select the suspend and resume thresh-
olds, 𝑉sus and 𝑉res , from nine possible values.

A TI TPS62840 buck regulator steps down the capacitor voltage
to a constant 2 V supply that powers the two MCUs and the periph-
erals. The regulator activates when the capacitor voltage reaches
the fixed 3.7 V wake-up threshold, 𝑉on, of the MAX20361 and deac-
tivates when the voltage drops below the fixed 1.75 V low-voltage
lockout, 𝑉off .
Comparators. Riotee implements a soft intermittency approach [10,
17], where the device avoids energy-intensive resets by gracefully
suspending execution and entering a low-power sleep mode before
the capacitor voltage drops below 𝑉off . The energy required for
each uninterrupted execution phase, or energy burst, depends on the
application and may vary dynamically. Larger energy bursts allow
longer continuous execution but require longer charging times.

To enable dynamic control of the burst size, a dual compara-
tor monitors the capacitor voltage and outputs two digital signals
indicating whether the voltage is below, between, or above the
suspend threshold, 𝑉sus , and the resume threshold, 𝑉res . Figure 6
shows these thresholds along with the fixed𝑉on and𝑉off thresholds.
A resistor network, inspired by traditional R2-R digital-to-analog
converters (DACs), provides reference voltages to the comparators.



Riotee: An Open-source Hardware and Software Platform for the Battery-free Internet of Things SenSys ’24, November 4–7, 2024, Hangzhou, China

This network, shown in Figure 3, consists of six 0201-sized resis-
tors, which are compact, significantly cheaper, and draw an order of
magnitude less current than the rheostats used in other designs [3].

The two tri-state GPIOs signals, 𝑑in1 and 𝑑in2 , controlling the
network can be set to High, Low, or High-Z, resulting in nine input
states. We define target thresholds from 2.5V to 4.1V in 200mV
steps for𝑉sus and from 3.0 V to 4.6 V for𝑉res , based on the maximum
capacitor voltage and𝑉off . Using mesh network analysis and brute-
force optimization, we select resistor values from the E24 series
that minimize the mean squared error (MSE) of the thresholds.
Energy harvesting-based sensing. Energy harvesting-based sens-
ing [25, 37] can reduce the size, weight, cost, and energy consump-
tion of a device by eliminating dedicated sensors and instead ex-
tracting information about a physical process from the harvester’s
parameters. Riotee supports such applications by providing access
to the voltage and current of the attached harvester. The harvesting
counter aboard the MAX20361 counts the switching cycles of the
boost converter within a configurable time period, directly propor-
tional to the harvesting current for any voltage. The MAX20361
also allows reading the open-circuit voltage and the currently set
harvesting voltage, enabling sampling of the energy-harvesting
signal at up to 20Hz. Additionally, the capacitor voltage is available
on the ADC/comparator inputs of both MCUs through a voltage
divider and op-amp buffer.
Current measurement. Measuring current draw during appli-
cation development is crucial for optimizing the use of harvested
energy. To simplify this process for battery-free devices, the Rio-
tee Module allows current measurement on the 2V power supply
using an external ammeter. By pulling the bypass signal high and
connecting an ammeter between the 2V (𝐴on) and 𝑉shunt pads on
the back of the module, developers can measure dynamic current
consumption without affecting the device’s real-world operation.
Timekeeping.Keeping track of time is essential. Traditional battery-
powered devices use a counter driven by a low-power oscillator
that runs continuously and may be periodically synchronized to an
external reference clock. On battery-free devices, this is challenging
because power outages stop the oscillator, preventing the counter
from incrementing. After waking up, the device cannot determine
the elapsed time.

To address this, Riotee features an ultra-low-powerAmbiqAM1805
RTC with backup capacitors. In case of a power outage, the RTC
switches to the backup supply, supported by two parallel 22 µF
capacitors that sustain the 14 nA current draw for over 3min. This
solution occupies just 30mm2 and costs less than USD 1.50. The soft
intermittency approach mitigates the disadvantage of long startup
times, as Riotee suspends execution gracefully before a power out-
age, requiring the RTC to reinitialize only after extended periods
without energy input. The RTC also includes a software-controlled
switch to cut power to all parts except itself, minimizing current
while waiting for a timer to expire. When the timer expires, the
switch closes, and the system restarts.

4.3 Riotee Probe
Uploading and debugging firmware on battery-free devices is chal-
lenging. Harvester power is generally insufficient for flashing new
firmware, and the additional current consumption and leakage

Figure 4: Architecture of Riotee Probe. An RP2040 translates
requests received via USB into SWD and SBW sequences on pins that
control the MCUs on the Riotee Module. A 2V regulator supplies the
Riotee Module during programming and debugging. Four GPIO lines
facilitate additional functionality.

through programming pins of off-the-shelf dongles can interfere
with device behavior. However, connecting the device to a constant
power supply prevents observing its behavior under real harvested
energy conditions.

The Riotee Probe supports programming both the MSP430 and
nRF52 on the Riotee Module while switching between constant
supply mode and untethered battery-free operation. Figure 4 shows
the architecture of the Riotee Probe. On the host side, the Rasp-
berry Pi RP2040 MCU provides an ARM CMSIS-DAP compatible
interface via USB-C, compatible with standard software tools like
pyOCD and OpenOCD. On the target side, it exposes a standard
10-pin, 0.1-inch connector compatible with Tag-Connect cables
for in-circuit debugging with minimal footprint. Pin-enabled level
shifters translate between the 3.3V supply of the RP2040 and the
2V supply of the Riotee Module.

We develop a ZephyrOS-based firmware for the RP2040 that
translates USB requests into corresponding transfers on the pro-
gramming pins. At the beginning of each transfer, the constant
power supply is enabled, and the programming signals are con-
nected to the device via analog switches. After programming, the
power supply and programming pins are disconnected, allowing the
device to return to harvesting operation and enabling immediate
observation of the new firmware’s operation without interference.
Users can also enable the constant power supply with a dedicated
command.

We extend the default ARM CMSIS-DAP commands for program-
ming and debugging the nRF52 with custom vendor commands for
resetting and halting the MSP430 and for reading and writing its
memory via TI’s Spy-Bi-Wire (SBW) protocol. This allows program-
ming both chips through a unified Python interface running on the
host PC.

The Riotee Probe also acts as a USB-UART bridge, forwarding
serial data between the host and a Riotee device in both untethered
battery-free and constant power supply modes. Additionally, it has
four GPIOs controllable via USB from the command-line interface
or API. This allows building test jigs to automatically program and
test Riotee-based devices or implementing specialized debugging
mechanisms [7, 12].



SenSys ’24, November 4–7, 2024, Hangzhou, China Kai Geissdoerfer and Marco Zimmerling

Table 2: Performance specification of Riotee Module. Values
with a * are from datasheets, all others are measured.

Parameter Value

Idle current 4.8 µA
Deep sleep current 72 nA
RTC holding time 210 s
Threshold accuracy 0.097V
Comparator circuit current 1.45 µA
MSP430 CPU active current* 3mA
nRF52 CPU active current* 5.6mA
Radio TX 1Mbps 0 dBm current* 11.0mA
Radio RX 1Mbps current* 10.5mA
Harvesting voltage range* 0.225V to 2.5V
Harvesting power range* 0.015mW to 300mW
Output current 2 V* 750mA
Capacitor voltage range* 0 V to 4.7V

4.4 Riotee Shields
The Riotee Board integrates all necessary components required to
build a fully functional device with the exception of the harvester.
Adopting the extensibility approach from highly successful plat-
forms like Arduino and Raspberry Pi, we provide three shields that
plug into the Riotee Board’s headers, facilitating rapid battery-free
device prototyping and serving as a reference for users designing
their own custom shields.
Solar Shield. This shield features four AnySolar KXOB25x03F solar
panels and a two-position sliding switch that connects none, one,
three, or all four panels in parallel. This configuration allows easy
experimentation with different harvesting currents under given
ambient light conditions.
Capacitor Shield. This shield includes eight capacitors of different
values and dielectrics: 3× 47 µFMLCCs, 3× 220 µFMLCCs, 1× 10mF
electric double-layer capacitors (EDLC), and 1× 220mF EDLC. An
eight-position sliding switch enables selection from 256 possible
capacitor combinations to meet application needs. It also helps
users (e.g., students) observe the impact of energy storage size on
system behavior.
Sensor Shield. This shield integrates a Bosch BMA400 accelerom-
eter, a Sensirion SHTC3 digital temperature and humidity sensor,
and a Vesper VM1010 analog microphone with a power switch. The
Sensor Shield enables quick assembly of real sensing applications
and is used in some software examples and our hot-word detection
case study in Section 6.

4.5 Performance Specification
Table 2 lists key performance metrics of the Riotee Module.
Input and output ranges. Riotee’s harvesting voltage and power
ranges are ideal for single- or multi-cell solar harvesting. Addi-
tionally, the boost converter interface is compatible with RF [41],
thermal [38], and kinetic energy harvesting [36]. The buck regula-
tor’s output current supports power-hungry peripherals, such as
satellite modems and small motors.

Table 3: Current selling prices of Riotee hardware.

Product Price (USD)

Riotee Module 59
Riotee Board 99
Riotee Probe 56
Riotee Solar Shield 39
Riotee Capacitor Shield 39
Riotee Sensor Shield 39

Capacitor voltage range. The capacitor voltage range supports
various storage elements. By reducing themaximum storage voltage
through a command to the MAX20361 boost charger, Riotee is also
compatible with lower voltage supercapacitors and rechargeable
batteries.
Current draw. We utilize the current measurement feature of
the Riotee Module to measure its current draw with a Keithley
SMU2604B. Since the current is measured at the output of the buck
regulator, it includes the consumption of both MCUs, the RTC, and
the comparator circuit but excludes the quiescent currents of the
boost converter and buck regulator. Idle current is measured with
both MCUs in low-power mode, the RTC aboard the nRF52 running,
and the comparator circuit active. Deep sleep current is measured
while the AM1805 RTC is running and disconnecting the remaining
components of the system (see Section 4.2).

The measured idle current is 4.8 µA, significantly lower than
previous platforms, which draw at least 6.25 µA [21] and 10 µA [3].
The 72 nA power-down current is comparable to the leakage current
of typical MLCC and EDLC.
RTC holding time. To measure the duration that the RTC can
operate during a power outage, we set the RTC to an arbitrary date,
disconnect the harvester for a specified duration, reconnect the
harvester, and check if the RTC value matches the initial value plus
the outage duration. This experiment is repeated with increasing
power outage times until the RTC returns an incorrect time due to
power failure. Table 2 lists the longest power outage after which
the RTC still returns the correct time. The measured 210 s signifi-
cantly exceed the useful range of state-of-the-art remanence-based
timekeeping solutions [11, 13].
Threshold accuracy. To evaluate the accuracy of the comparator
thresholds generated with the resistor network in Figure 3, we
power a Riotee Module from a constant harvesting source, iterate
through all possible 𝑉res and 𝑉sus thresholds, and measure the ca-
pacitor voltage when the corresponding interrupt triggers using the
internal ADC. We then compute the absolute difference between
the measured value and the target threshold. The median deviation
measured is 0.013V, with a maximum deviation of 0.097V.

4.6 Pricing
Riotee is a first-of-its-kind platform offering high versatility, per-
formance, and low-power operation in a compact package suitable
for deployments. Integrating two MCUs, an RTC, a boost converter,
a buck charger, an op-amp, a dual comparator, three transistors,
an LED, and 77 passive components on the tiny Riotee Module
necessitates the use of small-pitch components (e.g., nRF52833 in a



Riotee: An Open-source Hardware and Software Platform for the Battery-free Internet of Things SenSys ’24, November 4–7, 2024, Hangzhou, China

Figure 5: Riotee software architecture. The application executes
on the nRF52 as a FreeRTOS task. When energy gets low, the runtime
activates a high-priority system task that checkpoints application
state to non-volatile FRAM on the MSP430.

350 µm WLCSP package) and high-density PCB design. Advanced
manufacturing techniques, such as laser-drilled blind and buried
vias, are prohibitively expensive in low volumes. However, manu-
facturing the hardware in larger batch sizes allows us to distribute
these costs across many PCBs, making Riotee affordable. Table 3
lists the current selling price of the Riotee hardware. The price
of USD 99 for the Riotee Board is comparable to typical battery-
powered devices like Arduino (USD 20 to USD 114), TelosB (USD
82), or OpenMote (USD 128).

5 SOFTWARE
In addition to the Riotee hardware, we provide a well-documented,
open-source SDK that includes a battery-free runtime, various pe-
ripheral drivers, two network protocols, and extensive application
examples. The SDK, implemented in C with basic C++ support,
features a public API with doxygen-style comments, contextual
documentation, and several examples, all rendered on a publicly
hosted website. An Arduino package provides a simplified SDK
and cross-platform installation with just a few mouse clicks. The
SDK is hosted on GitHub, where users are encouraged to submit
issues and commits. Continuous integration (CI) and continuous
deployment (CD) pipelines automatically test the compilation of
the examples and handle the deployment of semantically versioned
releases to a web server after new commits. Additionally, we offer
a GitHub template repository for developing applications with the
SDK in Visual Studio Code. This section details the Riotee software
starting with the runtime.

5.1 Runtime
The battery-free runtime is at the core of the Riotee SDK, providing
an efficient and flexible foundation for developing battery-free
applications. The runtime’s primary responsibility is to retain state
across inevitable power failures, including all variables and register
values representing the state of the application, network stack, and
peripheral drivers. This process, known as checkpointing, involves
copying data between volatile memory/registers and non-volatile
memory.

Table 4: Callbacks of Riotee runtime. The user interacts with the
runtime mainly through a number of callbacks.

Callback Called . . .

earlyinit() right after every reset
lateinit() later after every reset
bootstrap() once after programming the device
suspend() before the application is suspended
resume() before the application is resumed

Figure 5 provides an overview of the software architecture. In
our current implementation, the application and the Riotee runtime
execute on the more powerful nRF52, while the MSP430 serves as a
SPI-controlled non-volatile memory.

To write an application, the user implements a main() function
and several callback functions listed in Table 4. Using a typical
capacitor voltage profile, Figure 6 illustrates the execution sequence
of these functions as described below:
1 The 2 V power supply turns on as the capacitor voltage reaches

the wake-up threshold, 𝑉on. Immediately after the MCU starts
up, the optional earlyinit() callback allows attached peripherals
to be put into a low-power mode to avoid excessive current
draw, which may prevent the application from ever starting up.
Next, the MCU enters a low-power mode until the capacitor
voltage reaches the resume threshold, 𝑉res .

2 Execution continues with the lateinit() callback. This is the
place to perform basic peripheral configuration that applies
throughout the entire application execution, such as setting up
serial output or initializing the ADC. Next, themain() function
starts executing.

3 When the capacitor voltage drops below the suspend thresh-
old, 𝑉sus , the runtime suspends code execution and puts the
device into low-power mode. This soft intermittency approach
reduces the energy overhead associated with each store, re-
set, and restore cycle of traditional intermittent systems. An
optional suspend() callback can turn off any power-hungry
peripherals before entering low-power sleep mode.

4 If the harvesting current exceeds the sleep current, the capaci-
tor voltage rises again. When it reaches the resume threshold,
𝑉res , the resume() callback is called, and execution of themain()
function resumes.

5 If the capacitor voltage does not recover above 𝑉sus within
the time interval 𝑇rec , all volatile variables and registers are
copied to non-volatile memory.𝑇rec is fixed at 100ms, allowing
the comparator to recover above the internal hysteresis when
there is sufficient energy input, while preventing the capacitor
voltage from dropping too low to checkpoint the application
state using the remaining energy.

6 After a power failure, variables and registers are restored from
non-volatile memory, and execution resumes from the last
executed instruction.

In addition to this automatic suspend and resume cycle, an applica-
tion may synchronize execution with ambient energy availability
by calling wait_for_cap_charged(), which halts execution until the
𝑉res threshold is triggered.



SenSys ’24, November 4–7, 2024, Hangzhou, China Kai Geissdoerfer and Marco Zimmerling

Figure 6: Illustration of Riotee’s runtime operation. The application is implemented in a main() function and several callback functions.
The execution of these functions depends on the capacitor voltage and the voltage thresholds. The main() function executes continuously even after
harvesting gets interrupted, for example, when a shadow temporarily covers the solar panel.

FreeRTOS-based implementation. We implement the Riotee
runtime on top of thewidely used, well-audited FreeRTOS operating
system. We select FreeRTOS because of its minimal runtime and
code overhead and its seamless integration with our toolchain.
Specifically, the runtime is implemented as three FreeRTOS tasks:
a low-priority idle task, a medium-priority user task, and a high-
priority system task. The idle task keeps the MCU in low-power
sleep mode. The user task executes the application code, while the
system task controls execution and handles checkpointing.

After the lateinit() callback, the user task is suspended, and the
system task waits until the 𝑉res threshold is detected. The idle task,
being the only active task, keeps the system in low-power mode.
Upon detecting the𝑉res threshold, the system task resumes the user
task and blocks until the 𝑉sus threshold is detected. The user task
becomes the highest-priority task ready to execute and is swapped
in by the scheduler.

When the capacitor voltage drops and remains below𝑉sus for𝑇rec ,
the system task becomes ready and is swapped in by the scheduler.
At this point, the scheduler pushes all registers to the stack of the
user task. Once the system task runs, it looks up the start and end
of the user stack in the task control block and copies these data
together with the global/static variables to non-volatile memory.
After a power failure, these data are restored to the respective
memory area, and once the task is swapped in again, execution
continues exactly where it was suspended
Retained memory. Checkpointing consumes lots of energy and
occurs when the energy stored in the capacitors is already low.
To guarantee completion, the amount of data to be retained must

be small enough to ensure the energy required for copying is less
than the remaining usable energy in the capacitors. To satisfy this
condition, the amount of retained RAM available to the user is
limited by a constant define.

The default value of this define was determined to fit the on-
board capacitance and default suspend threshold of the Riotee Mod-
ule. Compilation fails with an error message if the user exceeds the
memory limit. Users can either place variables outside the retained
memory area using provided macros or increase the maximum
amount of retained RAM. In the latter case, checkpointing may
take longer and consume more energy than stored in the built-in
capacitors, requiring an increase in either capacitance or the 𝑉sus
threshold.

5.2 Peripheral Operation
Peripheral state is generally volatile and cannot be easily saved
and restored like other application state. For example, an applica-
tion may enable an oscillator during startup by setting a bit in a
write-only register. The oscillator stops when power fails and does
not restart when power returns, although the application state is
restored. This inconsistency can be critical if the application re-
lies on the oscillator for operations such as transmitting a packet.
To enable the safe use of peripherals with Riotee, we design an
effective peripheral management scheme based on the three key
mechanisms described below. Using this scheme, we implement
drivers for the radio, ADC, RTC, GPIOs, SPI, and I2C.
Encapsulation. All configuration required for peripheral oper-
ation occurs in the earlyinit() or lateinit() callbacks (see Table 4)



Riotee: An Open-source Hardware and Software Platform for the Battery-free Internet of Things SenSys ’24, November 4–7, 2024, Hangzhou, China

and/or within a critical section. This ensures that the application
is never interrupted by a power failure during peripheral config-
uration, which could lead to unsafe or incomplete configuration
when the application resumes from a checkpoint. For all our imple-
mented drivers and protocols, the configuration takes only a few
microseconds, and the critical sections do not significantly delay
system suspension.
Notification. After configuring an asynchronous peripheral and
exiting the critical section, the application task blocks, waiting for
a FreeRTOS direct-to-task notification from the peripheral’s inter-
rupt routine signaling the completion of the operation. While the
application task blocks, the idle task keeps the MCU in sleep mode.
In case of a power failure, the runtime sends a distinct notification
value to unblock the application task after power is restored. When
the application receives this notification, it can decide to retry the
operation once sufficient energy becomes available.
Teardown. One critical assumption for successfully implementing
a soft intermittency runtime is that power consumption must be
reduced immediately upon detecting a low energy condition to
avoid depleting the capacitor below the minimum operating voltage.
While the CPU can be easily put into a low-power sleep mode, an
active peripheral may still draw significant current, depleting the
capacitor before a checkpoint can be taken. To prevent this, each
driver can implement a teardown() function and store a pointer
to it in a table. When the runtime detects a low-energy condition,
it iterates through the table and executes every function with a
valid pointer. Within the teardown() function, the driver can abort
ongoing operations, put the peripheral into low-power mode, and
notify the application.

5.3 Arduino Support
Installing the toolchain and working with the rich SDKAPI can be a
barrier for programming novices wanting to start with battery-free
devices. To address this, we implement the Arduino API on top of
the standard SDK API and offer a convenient Arduino package that
can be installed with a few mouse clicks. The Arduino ecosystem
has enabled a generation of hobbyists, makers, and students to build
exciting applications with a low entry barrier while maintaining
the efficiency of programming close to the hardware in C/C++.

The Riotee Arduino package supports serial output, digital I/O,
analog read, SPI, and I2C. The Arduino setup() function maps to
the runtime’s lateinit() callback, and the Arduino loop() function is
continuously executed inside the runtime’smain() function. Behind
the scenes, most Arduino API calls translate into standard SDK API
functions, incurring a negligible performance penalty. Thus, the
compiled code is significantly more efficient than solutions relying
on interpreted code, as demonstrated in the evaluation of a Python-
based programming framework for battery-free devices [26].

When the Arduino API does not meet the developer’s require-
ments for flexibility or performance, they can seamlessly use stan-
dard SDK API calls within their Arduino sketch. For instance, while
the Arduino analog_read() function only allows reading a single
sample from the ADC, the ADC driver in the SDK enables the ac-
quisition of large numbers of samples with configurable sampling
rates, resolutions, and ranges without CPU interaction.

5.4 Networking
The nRF52 on the Riotee Module comes with a powerful and flexible
2.4GHz radio. As part of the Riotee SDK, we provide two network
protocol implementations for reference and as a starting point for
networked battery-free applications.
BLE advertising. Riotee’s Bluetooth Low Energy (BLE) imple-
mentation allows sending standard-compliant undirected, non-
connectable advertising packets on the three BLE advertising chan-
nels. The SDK API enables embedding arbitrary user data in the
advertisements, making it easy to send application data, for exam-
ple, to a smartphone.
Stella. We also provide a custom network protocol called Stella for
bi-directional data exchange between Riotee devices and an always-
on base station. The SDK includes the Stella firmware for the Riotee
Module and a reference implementation for the base station. The
base station, consisting of an nRF52840 dongle USB transceiver
and a computer, can communicate with up to 16 connected Riotee
devices and forward packets to a remote client via a RESTful API.

To communicate, a device transmits a packet to the base station
containing its device ID, a packet ID, an optional acknowledgment
of a previously received packet, and a payload of up to 247 bytes.
After transmitting the packet, the device transitions into receive
mode and listens for a response from the base station. The base
station continuously listens for incoming packets. Upon receiving
a packet from a device, the base station responds with an acknowl-
edgment packet containing the device’s ID, the packet ID of the
received packet being acknowledged, the packet ID of the current
packet, and a payload of up to 247 bytes.

6 RIOTEE IN ACTION
This section showcases the practical utility of Riotee through an
example battery-free application: hot-word detection based on in-
termittent DNN inference.
Scenario.A battery-free device equipped with amicrophone listens
in low-power mode. Upon detecting a sound, the device wakes up
and captures a 1-second audio sample at a 16 kHz sampling rate.
After extracting features from the audio sample, the data are fed into
a machine learning model designed to recognize and differentiate
between two predefined keywords, “yes” and “no.” The outcome of
the on-device classification is then sent to a smartphone via BLE.

We build the battery-free device with a Riotee Board, Sensor
Shield, Solar Shield, and Capacitor Shield. The device is placed next
to a window on a sunny day, with all four solar panels on the Riotee
Solar Shield activated. The Riotee SDK supports TensorFlow Lite,
and we use the pre-trainedmicrospeechmodel from TensorFlow Lite
examples. The model consists of 18.8 kB of topological information
and neuron weights stored in non-volatile flash. At runtime, feature
extraction and inference use a shared 9464 B buffer in RAM.

While the Riotee runtime suspends and resumes feature extrac-
tion and inference, the 1-second microphone sampling must not
be interrupted. To determine the required capacitance, we pro-
gressively add individual capacitors on the Capacitor Shield until
sampling completes. Successful sampling is achieved when all six
MLCCs on the Capacitor Shield are activated, corresponding to an
effective capacitance of about 210 µF when fully charged to 4.7V.



SenSys ’24, November 4–7, 2024, Hangzhou, China Kai Geissdoerfer and Marco Zimmerling

Figure 7: Real-world trace of a Riotee device performing battery-free hot-word detection using TensorFlow Lite deep neural
network inference. The solar panels are covered with a hand from time 5 s until time 13 s to showcase checkpointing.

Example trace. Figure 7 shows a representative trace of the ca-
pacitor and supply voltages of our battery-free hot-word detection
device, recorded with a Saleae Logic 8 logic analyzer. While waiting
for a sound, the device consumes little energy, keeping the capacitor
fully charged. Upon sound detection, sampling starts with medium
power draw. Immediately after sampling, processing (i.e., feature
extraction and inference) starts with higher power draw, quickly
draining the remaining energy on the capacitor before the runtime
suspends execution until the capacitor voltage recovers and exe-
cution continues. After covering the solar panels with a hand, the
capacitor discharges slowly to around 2.5V. At this point, a 45 kB
checkpoint, including the 32 kB audio sample, the 9464 B processing
buffer, and the application stack, is stored in non-volatile memory.
Shortly after, the buck regulator switches off the supply voltage.
Upon uncovering the solar panels, the capacitor quickly charges
up, the supply voltage is turned on, and the MCU starts up. Once
fully charged, the checkpoint is restored, and processing continues
through another suspend-resume cycle. When processing is done,
the application waits until the capacitor is fully charged and sends
the classification result in a BLE packet.
Performance. The battery-free device reliably distinguishes be-
tween “yes,” “no,” and silence/noise. Preprocessing and feature
extraction take 251ms, while the actual inference takes 41.2ms.
Under the given light conditions, a complete cycle from sound
detection to result transmission takes 5.8 s.
Summary. The Riotee hardware and software ecosystem facilitates
the development of complex battery-free applications involving
energy harvesting, sensing, machine learning, and wireless commu-
nication. The adaptable hardware simplifies the creation of custom
prototypes without soldering, while the efficient runtime manages
intermittent execution and checkpointing seamlessly, alleviating
the burden on application developers. The code of this battery-free
application is available as an example in the Riotee SDK.

7 USER STUDY
We conducted two user studies using questionnaires among real
Riotee users. All participants of these user studies provided in-
formed consent prior to their involvement, and their anonymity
was protected throughout the research process. Our results show
that both customers and students rate Riotee’s usefulness and us-
ability highly.

7.1 Customers
Riotee has been commercially available for one year and has been
sold to 27 customers across eight countries in Europe, North Amer-
ica, and Australia. A total of 172 units have been sold across the
six products combined, providing a unique opportunity to collect
feedback from real users. Since our distributor does not disclose
customer data, we contacted all six users for whom we had con-
tact information because they had previously contacted us through
email or GitHub. We asked participants to complete a question-
naire with ten standardized questions from the system usability
scale (SUS) [6] and four custom open-ended questions. We received
anonymized feedback from five respondents and summarize the
results below (see Appendix A for the questions and complete re-
sponses).
Projects. Customers use Riotee for a variety of projects, from
machine learning to intermittent networking. In addition to these
anticipated use cases, we also received some unexpected replies. For
example, one customer is coupling Riotee with a miniature wind
generator, while another plans to replace a proprietary battery-free
device with Riotee to benefit from open network protocols and
modern programming.
Usability. We asked participants to express their agreement with
the ten statements of the SUS [6] on a five-point Likert scale rang-
ing from strongly disagree to strongly agree. If unsure, participants
marked the center of the scale. Four out of five respondents would
like to use Riotee more frequently, while one is undecided. None
of the respondents found Riotee unnecessarily complex. Three re-
spondents found Riotee easy to use, while two were undecided.



Riotee: An Open-source Hardware and Software Platform for the Battery-free Internet of Things SenSys ’24, November 4–7, 2024, Hangzhou, China

Table 5: Comparison of battery-free platforms. Flicker is out-
dated and SuperSensor focuses on high-performance machine learning
applications.

Platform Clock RAM NVM Cap. Idle
Current

Flicker [21] 16MHz 2 kB 128 kB 22 µF 6.25 µA
SuperSensor [3] 100MHz 128 kB 2MB 80 µF >10 µA
Riotee 64MHz 128 kB 128 kB 66 µF 4.8 µA

Two respondents believed that most people would learn to use Rio-
tee quickly, while one disagreed. Overall, Riotee achieved a robust
system usability score of 68 % across the five participants.

7.2 Students
One of the primary goals of Riotee is to introduce students to
battery-free systems. We used Riotee for a lab course accompanying
a lecture offered to undergraduate students at our university during
the winter term 2023/2024. The lab consists of six assignments. The
first five assignments use Riotee as a general-purpose development
platform in constant power supply mode, gradually introducing
students to basic microcontroller concepts. The final assignment
focuses on battery-free aspects and intermittent computing. After
the last lab, we asked the 24 students who completed the lab to
fill out a six-question questionnaire. The first four questions asked
students to express their agreement with a statement on the five-
point Likert scale mentioned above, while the remaining two were
open-ended questions. We received anonymized feedback from
14 respondents and summarize the results below (see [19] for the
complete data).
Results. 11 out of 14 (78.6 %) respondents agreed that Riotee makes
it easy to follow the course, while only one disagreed. 12 out of 14
(85.7 %) respondents believed that Riotee is well-suited for introduc-
ing students to battery-free systems, with only one disagreement. 11
out of 14 (78.6 %) respondents agreed that using the same platform
throughout the course made for a seamless transition from con-
tinuously powered to battery-free operation, while one disagreed.
In summary, students appreciate the usefulness of Riotee for the
course.

8 RELATEDWORK
Riotee does not introduce fundamentally new concepts. Instead,
it synthesizes a decade of research on battery-free and intermit-
tent systems by integrating proven ideas and solutions into a well-
engineered, accessible platform covering a broad range of use cases.
As such, Riotee’s core contribution lies in providing a solid foun-
dation that aims to facilitate future scientific advancements and
community growth, comparable to how the TelosB has enabled
research and development of battery-powered sensor networks.
Platforms. Table 5 compares key performance metrics of Riotee
and some of its predecessors. Flicker [21] is built on the outdated
MSP430FR5989, offering significantly lower capabilities and per-
formance compared to Riotee while drawing higher current in idle
mode. SuperSensor [3], a newly developed multi-core platform
tailored for machine-learning applications, requires a proprietary

toolchain and substantial programming effort. It also draws consid-
erably more power than Riotee. Neither platform has a form factor
suitable for practical deployments. Consequently, instead of merely
improving software, documentation, and commercializing these
platforms, we design Riotee from the ground up to meet the design
goals outlined in Section 3.
Runtimes. Static checkpointing runtimes use a modified compiler
to insert checkpoints at loop iterations and function calls [34] or
before idempotent sections [42]. Task-based runtimes [22, 29, 43]
reduce overhead by only checkpointing between tasks, but require
to express the application as atomic, idempotent tasks in a runtime-
specific syntax.

To reduce the overhead of unnecessary checkpoints while allow-
ing execution of arbitrary application code, reactive checkpoint-
ing [4, 24] needs an interrupt that signals an impending power
failure to checkpoint volatile state and put the device into sleep
mode, avoiding depletion of the remaining charge. PowerNap [10]
further reduces overhead by only checkpointing when the capacitor
voltage does not recover after putting the device to sleep. Riotee
adopts this approach, providing low energy overhead without bur-
dening users with new syntax and detailed energy analysis of their
code.
Debugger. The Energy-interference-free Debugger [7] for MSP430-
based battery-free devices allows restoring the previous energy
state after debugging a system halted on a breakpoint without
interfering with the system’s energy-driven behavior. DIPS [12]
extends this concept for ARM Cortex-M based devices, enabling
debugging while emulating energy input from harvesting traces.

These adapters can be used to debug applications running on
the MSP430 or the nRF52 on the Riotee Module. Instead, the Riotee
Probe supports programming both MCUs on the Riotee Module
using a single adapter and a unified interface. Thanks to its pro-
grammable GPIO pins and power supply, energy-aware debugging
tools can be implemented easily.
Accessible programming. BFree [26] aims to simplify the devel-
opment of battery-free applications for hobbyists by implementing
an intermittency-safe Python interpreter. A user study confirms
that BFree achieves this goal, but a performance benchmark reveals
that the processing time and associated energy consumption can be
three orders of magnitude higher than the corresponding C imple-
mentation. Similarly, battery-free MakeCode [27] transforms pro-
grams written in novice-friendly but inefficient JavaScript, Python,
or graphical Blocks into intermittency-safe code.

In contrast, Riotee offers seamless transitioning between novice-
friendly Arduino code and low-level programming via a powerful
C/C++ API. The efficient resulting code makes Riotee suitable for
applications with tight energy budgets.
Peripheral support. Karma [5] prevents inconsistencies between
peripheral state and application logic by tracking state and calls,
rolling back execution to the last consistent state after a power
failure. EaseIO [44] avoids redundant code execution, idempotency
bugs, and unsafe code execution in task-based runtimes on mixed-
volatility MCUs by letting programmers mark and categorize I/O



SenSys ’24, November 4–7, 2024, Hangzhou, China Kai Geissdoerfer and Marco Zimmerling

operations. Samoyed [30] profiles peripheral consumption at run-
time and dynamically divides long-running operations into atomic
sections for safe operation with reactive checkpointing.

Riotee also encapsulates peripheral configuration in atomic sec-
tions but allows long-running operations. To avoid inconsistencies,
user code execution is halted until the operation terminates or
aborts due to insufficient energy. The user may then repeat the
operation when sufficient energy is available.
Dynamic energy burst scaling. Capybara [8] adjusts the amount
of energy available per execution cycle through switchable capaci-
tor banks that change the capacitance between fixed voltage thresh-
olds. Another work [20] uses a non-volatile resistor network to
control the turn-on threshold of the power supply dynamically. Su-
perSensor [3] uses a digital potentiometer for fine-grained turn-on
thresholds.

Riotee adopts the approach from [3] but employs a custom-
designed resistor network to provide nine different turn-on and
turn-off thresholds while drawing an order of magnitude less cur-
rent than the potentiometer-based solution.
Timekeeping.Maintaining accurate time on intermittently pow-
ered devices has received considerable attention. Common solutions
leverage the decay of charge in physical components [23], such as
volatile memory and capacitors, to gauge the duration of power
interruptions. However, these methods often suffer from decreasing
timing resolution as the length of the outage increases. For instance,
despite efforts to balance resolution and range using multiple ca-
pacitor stages, solutions like CHRT [11] and HARC [13] offer only
1-second resolution after a 100-second outage. Another lightweight
approach, based on modeling energy input, exhibits limitations
under fluctuating energy harvesting conditions [45].

In contrast, Riotee uses an ultra-low power Ambiq AM1805 RTC
with 44 µF backup capacitance to support its 14 nA current draw
through power outages of over 3min, while maintaining constant
10ms timing resolution. This solution excels in size, cost, and accu-
racy, particularly for soft intermittency systems where long RTC
startup times are not a concern.

9 CONCLUSIONS
Many battery-free platforms have been proposed but are rarely
reused due to limited availability, insufficient software support, and
lack of documentation. To address this, we have developed Riotee,
an open-source, user-friendly hardware and software platform that
is commercially available. Our user study shows that Riotee is
highly rated for usefulness and usability by students, makers, and
researchers, highlighting its potential as a valuable tool for research,
education, and development of battery-free systems.

AVAILABILITY
For reproducibility, we provide the version of the open-source
hardware design, software, and documentation available at the
time of publication at https://doi.org/10.5281/zenodo.13902777.

ACKNOWLEDGMENTS
Thanks to Ingmar Splitt for his valuable input on the hardware de-
sign and support with the experiments. This work has been funded

in part by the German Research Foundation (DFG) within the Emmy
Noether project NextIoT (ZI 1635/2-1), the Saxon State Ministry for
Science, Culture and Tourism, and the LOEWE initiative (Hesse, Ger-
many)within the emergenCITY center (LOEWE/1/12/519/03/05.001-
(0016)/72).

REFERENCES
[1] Mikhail Afanasov, Naveed Anwar Bhatti, Dennis Campagna, Giacomo Caslini,

Fabio Massimo Centonze, Koustabh Dolui, Andrea Maioli, Erica Barone, Muham-
mad Hamad Alizai, Junaid Haroon Siddiqui, and Luca Mottola. 2020. Battery-Less
Zero-Maintenance Embedded Sensing at the MithræUm of Circus Maximus. In
Proceedings of the 18th ACM Conference on Embedded Networked Sensor Systems
(SenSys).

[2] Saad Ahmed, Bashima Islam, Kasim Sinan Yildirim, Marco Zimmerling, Prze-
mysław Pawełczak, Muhammad Hamad Alizai, Brandon Lucia, Luca Mottola,
Jacob Sorber, and Josiah Hester. 2024. The Internet of Batteryless Things. Com-
munications of the ACM 67, 3 (2024).

[3] Abu Bakar, Rishabh Goel, Jasper de Winkel, Jason Huang, Saad Ahmed, Bashima
Islam, Przemysław Pawełczak, Kasım Sinan Yıldırım, and Josiah Hester. 2023.
Protean: An Energy-Efficient and Heterogeneous Platform for Adaptive and
Hardware-Accelerated Battery-Free Computing. In Proceedings of the 20th ACM
Conference on Embedded Networked Sensor Systems (SenSys).

[4] Domenico Balsamo, Alex S. Weddell, Geoff V. Merrett, Bashir M. Al-Hashimi,
Davide Brunelli, and Luca Benini. 2015. Hibernus: Sustaining Computation
During Intermittent Supply for Energy-Harvesting Systems. IEEE Embedded
Systems Letters 7, 1 (2015).

[5] Adriano Branco, Luca Mottola, Muhammad Hamad Alizai, and Junaid Haroon
Siddiqui. 2019. Intermittent Asynchronous Peripheral Operations. In Proceedings
of the 17th ACM Conference on Embedded Networked Sensor Systems (SenSys).

[6] John Brooke. 1996. SUS – a quick and dirty usability scale. 189–194.
[7] Alexei Colin, Graham Harvey, Brandon Lucia, and Alanson P. Sample. 2016. An

Energy-interference-free Hardware-Software Debugger for Intermittent Energy-
harvesting Systems. ACM SIGARCH Computer Architecture News 44, 2 (2016).

[8] Alexei Colin, Emily Ruppel, and Brandon Lucia. 2018. A Reconfigurable En-
ergy Storage Architecture for Energy-harvesting Devices. In Proceedings of the
23rd ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[9] Tuan Dang, Trung Tran, Khang Nguyen, Tien Pham, Nhat Pham, Tam Vu, and
Phuc Nguyen. 2022. IoTree: a battery-free wearable system with biocompatible
sensors for continuous tree health monitoring. In Proceedings of the 28th Annual
International Conference on Mobile Computing And Networking (MobiCom).

[10] Tim Daulby, Anand Savanth, Geoff V. Merrett, and Alex S. Weddell. 2021. Improv-
ing the Forward Progress of Transient Systems. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 40, 3 (2021).

[11] Jasper de Winkel, Carlo Delle Donne, Kasim Sinan Yildirim, Przemysław
Pawełczak, and Josiah Hester. 2020. Reliable Timekeeping for Intermittent Com-
puting. In Proceedings of the 25th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

[12] Jasper de Winkel, Tom Hoefnagel, Boris Blokland, and Przemysław Pawełczak.
2023. DIPS: Debug Intermittently-Powered Systems Like Any Embedded System.
In Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems
(SenSys).

[13] Vishal Deep, Vishak Narayanan, Mathew Wymore, Daji Qiao, and Henry Duwe.
2020. HARC: A Heterogeneous Array of Redundant Persistent Clocks for Bat-
teryless, Intermittently-Powered Systems. In Proceedings of the IEEE Real-Time
Systems Symposium (RTSS).

[14] Vishal Deep, Mathew L. Wymore, Alexis A. Aurandt, Vishak Narayanan, Shen Fu,
Henry Duwe, and Daji Qiao. 2021. Experimental Study of Lifecycle Management
Protocols for Batteryless Intermittent Communication. In Proceedings of the 18th
IEEE International Conference on Mobile Ad Hoc and Smart Systems (MASS).

[15] Everactive Eversensor. https://support.everactive.com/hc/en-us/articles/
9501962433303-Evernet-2-0-Basics. Accessed: 2024-04-13.

[16] Francesco Fraternali, Bharathan Balaji, Yuvraj Agarwal, Luca Benini, and Rajesh
Gupta. 2018. Pible: battery-free mote for perpetual indoor BLE applications.
In Proceedings of the 5th ACM Conference on Systems for Built Environments
(BuildSys).

[17] Kai Geissdoerfer and Marco Zimmerling. 2021. Bootstrapping Battery-free Wire-
less Networks: Efficient Neighbor Discovery and Synchronization in the Face
of Intermittency. In Proceedings of the 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI).

[18] Kai Geissdoerfer and Marco Zimmerling. 2022. Learning to Communicate Effec-
tively Between Battery-free Devices. In Proceedings of the 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI).

https://doi.org/10.5281/zenodo.13902777
https://support.everactive.com/hc/en-us/articles/9501962433303-Evernet-2-0-Basics
https://support.everactive.com/hc/en-us/articles/9501962433303-Evernet-2-0-Basics


Riotee: An Open-source Hardware and Software Platform for the Battery-free Internet of Things SenSys ’24, November 4–7, 2024, Hangzhou, China

[19] Kai Geissdoerfer and Marco Zimmerling. 2024. Riotee: An Open-source Hard-
ware and Software Platform for the Battery-free Internet of Things. Tech-
nical Report. https://nes-lab.org/wordpress/wp-content/uploads/2024/10/
geissdoerfer24riotee_tr.pdf

[20] Andres Gomez, Lukas Sigrist, Michele Magno, Luca Benini, and Lothar Thiele.
2016. Dynamic energy burst scaling for transiently powered systems. In Pro-
ceedings of the Design, Automation & Test in Europe Conference & Exhibition
(DATE).

[21] Josiah Hester and Jacob Sorber. 2017. Flicker: Rapid Prototyping for the Battery-
less Internet-of-Things. In Proceedings of the 15th ACM Conference on Embedded
Network Sensor Systems (SenSys).

[22] Josiah Hester, Kevin Storer, and Jacob Sorber. 2017. Timely Execution on Inter-
mittently Powered Batteryless Sensors. In Proceedings of the 15th ACM Conference
on Embedded Network Sensor Systems (SenSys).

[23] Josiah Hester, Nicole Tobias, Amir Rahmati, Lanny Sitanayah, Daniel Holcomb,
Kevin Fu, Wayne P. Burleson, and Jacob Sorber. 2016. Persistent Clocks for
Batteryless Sensing Devices. ACM Transactions on Embedded Computing Systems
15, 4 (2016).

[24] Hrishikesh Jayakumar, Arnab Raha, and Vijay Raghunathan. 2014. QUICKRE-
CALL: A Low Overhead HW/SW Approach for Enabling Computations across
Power Cycles in Transiently Powered Computers. In Proceedings of the 27th ACM
International Conference on VLSI Design and 13th ACM International Conference
on Embedded Systems.

[25] Sara Khalifa, Mahbub Hassan, Aruna Seneviratne, and Sajal K. Das. 2015. Energy-
Harvesting Wearables for Activity-Aware Services. IEEE Internet Computing 19,
5 (2015).

[26] Vito Kortbeek, Abu Bakar, Stefany Cruz, Kasim Sinan Yildirim, Przemysław
Pawełczak, and Josiah Hester. 2020. BFree: Enabling Battery-free Sensor Proto-
typing with Python. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 4, 4 (2020).

[27] Christopher Kraemer, Amy Guo, Saad Ahmed, and Josiah Hester. 2022. Battery-
free MakeCode: Accessible Programming for Intermittent Computing. Proceed-
ings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 6
(2022).

[28] Gaosheng Liu and Lin Wang. 2021. Self-Sustainable Cyber-Physical Systems
with Collaborative Intermittent Computing. In Proceedings of the 12th ACM
International Conference on Future Energy Systems.

[29] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: intermittent exe-
cution without checkpoints. Proceedings of the ACM on Programming Languages
1 (2017).

[30] Kiwan Maeng and Brandon Lucia. 2019. Supporting peripherals in intermittent
systems with just-in-time checkpoints. In Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation.

[31] Andrea Maioli and Luca Mottola. 2021. ALFRED: Virtual Memory for Intermittent
Computing. In Proceedings of the 19th ACM Conference on Embedded Networked
Sensor Systems (SenSys).

[32] EnOcean STM 400J Product Page. https://www.enocean.com/en/product/stm-
400j/. Accessed: 2024-04-13.

[33] Wiliot Pixel Product Page. https://www.wiliot.com/product/iot-pixels. Accessed:
2024-04-13.

[34] Benjamin Ransford, Jacob Sorber, and Kevin Fu. 2011. Mementos: system sup-
port for long-running computation on RFID-scale devices. In Proceedings of the
16th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[35] Alanson Sample, Daniel Yeager, Pauline Powledge, Alexander Mamishev, and
Joshua Smith. 2008. Design of an RFID-Based Battery-Free Programmable Sensing
Platform. IEEE Transactions on Instrumentation and Measurement 57, 11 (2008).

[36] Muhammad Moid Sandhu, Kai Geissdoerfer, Sara Khalifa, Raja Jurdak, Marius
Portmann, and Brano Kusy. 2020. Towards Energy Positive Sensing using Kinetic
EnergyHarvesters. In Proceedings of the IEEE International Conference on Pervasive
Computing and Communications (PerCom).

[37] MuhammadMoid Sandhu, Sara Khalifa, Kai Geissdoerfer, Raja Jurdak, andMarius
Portmann. 2021. SolAR: Energy positive human activity recognition using solar
cells. In Proceedings of the IEEE International Conference on Pervasive Computing
and Communications (PerCom).

[38] Lukas Sigrist, Naomi Stricker, Dominic Bernath, Jan Beutel, and Lothar Thiele.
2020. Thermoelectric Energy Harvesting From Gradients in the Earth Surface.
IEEE Transactions on Industrial Electronics 67, 11 (2020).

[39] Philip Sparks. 2017. The route to a trillion devices: The outlook for IoT investment
to 2035. White Paper. ARM Limited.

[40] Arduino Store. https://store-usa.arduino.cc/. Accessed: 2024-04-18.
[41] Vamsi Talla, Bryce Kellogg, Benjamin Ransford, Saman Naderiparizi, Shyamnath

Gollakota, and Joshua R. Smith. 2015. Powering the next billion devices with wi-fi.
In Proceedings of the 11th ACM Conference on Emerging Networking Experiments
and Technologies (CoNext).

[42] Joel Van DerWoude andMatthewHicks. 2016. Intermittent Computation without
Hardware Support or Programmer Intervention. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI).

[43] Kasim Sinan Yildirim, Amjad Yousef Majid, Dimitris Patoukas, Koen Schaper,
Przemyslaw Pawelczak, and Josiah Hester. 2018. InK: Reactive Kernel for Tiny
Batteryless Sensors. In Proceedings of the 16th ACM Conference on Embedded
Networked Sensor Systems (SenSys).

[44] Eren Yildiz, Saad Ahmed, Bashima Islam, Josiah Hester, and Kasim Sinan Yildirim.
2023. Efficient and Safe I/O Operations for Intermittent Systems. In Proceedings
of the 18th European Conference on Computer Systems (EuroSys).

[45] Eren Yildiz and Kasim Sinan Yildirim. 2021. Persistent Timekeeping Using
Harvested Power Measurements. In Proceedings of the 19th ACM Conference on
Embedded Networked Sensor Systems (SenSys).

https://nes-lab.org/wordpress/wp-content/uploads/2024/10/geissdoerfer24riotee_tr.pdf
https://nes-lab.org/wordpress/wp-content/uploads/2024/10/geissdoerfer24riotee_tr.pdf
https://www.enocean.com/en/product/stm-400j/
https://www.enocean.com/en/product/stm-400j/
https://www.wiliot.com/product/iot-pixels
https://store-usa.arduino.cc/

	Abstract
	1 Introduction
	2 Current Battery-free Platforms
	3 Riotee Overview
	4 Hardware
	4.1 Riotee Board
	4.2 Riotee Module
	4.3 Riotee Probe
	4.4 Riotee Shields
	4.5 Performance Specification
	4.6 Pricing

	5 Software
	5.1 Runtime
	5.2 Peripheral Operation
	5.3 Arduino Support
	5.4 Networking

	6 Riotee in Action
	7 User Study
	7.1 Customers
	7.2 Students

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

